(18 points) I. Calculate:

A. If \(f(x) = x \ln(x^2 + 1) \), then \(f'(x) = \)

B. If \(f(t) = \frac{\cos t}{\sqrt{t}} \), then \(f'(t) = \)

C. \(\frac{d}{dx} \left(\frac{a}{cx + d} \right) = \)

D. \(\int_1^{x+1} \frac{dx}{x} = \)

E. \(\int_1^3 \frac{t^2 + 1}{t} \, dt = \)
F. \[\lim_{{x \to 0}} \frac{\sin x}{{e^x - 1}} = \]

(10 points) II. Using this table of values for the function \(f \),

<table>
<thead>
<tr>
<th>(x)</th>
<th>0.0</th>
<th>0.5</th>
<th>1.0</th>
<th>1.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x))</td>
<td>-2</td>
<td>-5</td>
<td>-2</td>
<td>0</td>
</tr>
</tbody>
</table>

A. estimate \(\int_0^{1.5} f(x) \, dx \)

B. estimate \(f'(1.0) \)
III. Suppose \(F(x) = \int_{1/2}^{x} \ln t \, dt \) for \(x > 0 \).

A. Estimate \(F(1) \).

B. Compute \(F'(2) \).

C. For what values of \(x \) is \(F \) decreasing?

IV. Consider the differential equation \(\frac{dy}{dx} = -\ln x \) with initial condition \(y(1) = 1 \).

Show either that \(y = x(1 - \ln x) \) is a solution or that it is not a solution.
(22 points) V. Here is a graph of f', the derivative of the function f.

Warning: These questions are about f, f', and f''. The graph you see above is the graph of f'.

A. The values of x (if any) at which f' is not differentiable:

B. The values of x (if any) at which f' is not continuous:

C. The interval(s) where f increases:

D. The interval(s) where f is concave down:

E. The inflection points (if any) of f:
F. \[\int_{0}^{6} f'(t)dt = \]

G. The average value of \(f' \) over the interval \([0, 6]\) :

H. If \(f(0) = 5 \), then \(f(4) = \)

I. \(f''(3) = \)

J. The critical points (if any) for \(f \):

K. The local minima (if any) for \(f \).

(6 points) VI. A snowstorm lasts 4 hours. Suppose \(f(t) \) is the rate of snowfall (in inches per hour) \(t \) hours after the start of the storm.

A. Write a sentence (including units) describing the quantity measured by
\[
\int_{2}^{4} f(t)dt .
\]

B. Write a sentence (including units) describing the quantity measured by \(f'(3) \).
(10 points) VII. You are to design a gutter (a long trough) by bending up the edges of a long strip of metal 12 inches wide so that the cross-section of the gutter is a rectangle. (A picture is below.) The amount of metal to bend up must be chosen to make the cross-sectional area as large as possible, so that the gutter will carry as much water as possible. What are the cross-sectional dimensions of the gutter that achieves this?

(8 points) VIII. A population of cells is growing in a laboratory. The number of cells N at time t (measured in hours from the beginning of the experiment) changes at a rate given by

$$\frac{dN}{dt} = 2735.2e^{-t}$$

A. Give all solutions to this differential equation.

B. Three hours after the experiment begins there are 10,000 cells. Give a formula for $N(t)$.
(9 points) IX. Given the equation $x^2 y + xy^2 = 6$,

A. what is the value of $\frac{dy}{dx}$ at the point where $x = 2$ and $y = 1$?

B. Give the local linearization of this curve at the point $(2, 1)$.

C. Use your answer to part B to approximate y when $x = 1.9$.