1. Let \(E = f(t) \) represent the emissions of nitrogen oxides in millions of metric tons per year in the US. Let \(t \) be the number of years since 1940. What are the units and meaning of \(\int_0^{50} f(t) \, dt \)?

2. Suppose you know that \(\int_a^b f(x) \, dx = 6 \), \(\int_a^b g(x) \, dx = -3 \), \(\int_a^b (f(x))^2 \, dx = 8 \), and \(\int_a^b (g(x))^2 \, dx = 2 \). Find the following definite integrals.
 a. \(\int_a^b (f(x) + g(x)) \, dx \)
 b. \(\int_a^b (f(x))^2 \, dx \)
 c. \((\int_a^b f(x) \, dx)^2 \)
 d. \(\int_a^b (cg(x))^2 \, dx \) (\(c \) is a constant)

3. Given the values of the derivative \(f'(x) \) in the table and \(f(0) = 100 \), estimate \(f(x) \) for \(x = 2, 4, 6 \). (That is, estimate \(f(2), f(4), f(6) \).)

 \[
 \begin{array}{c|c|c|c|c}
 x & 0 & 2 & 4 & 6 \\
 \hline
 f'(x) & 10 & 18 & 23 & 25 \\
 \end{array}
 \]

4. Find the following indefinite integrals (that is, find the most general antiderivative for each given function).
 a. \(\int (\frac{1}{x} + \frac{3}{x}) \, dz \)
 b. \(\int (e^t + \pi \sin t) \, dt \)