Suppose \(W \) is the subset of \(\mathbb{R}^2 \) consisting of the \(x \) and \(y \) axes, so \(W = \{ \begin{bmatrix} x \\ y \end{bmatrix} : xy = 0 \} \) is the set of all points in \(\mathbb{R}^2 \) for which either the first coordinate is 0 or the second coordinate is 0 or both coordinates are 0.

A. Show that if \(\mathbf{u} \) is in \(W \), then any scalar multiple of \(\mathbf{u} \) is also in \(W \).

B. Give two specific vectors in \(W \) whose vector sum is not in \(W \).

C. Why is \(W \) not a subspace of \(\mathbb{R}^2 \)?