A rectangular swimming pool is to be built with an area of 1800 square feet. If the length of the swimming pool is \(L \) ft. and the width is \(W \) ft., then \(LW = 1800 \) sq. ft.

The owner wants 5-foot wide decks along either side and 10-foot wide decks at the two ends. Thus, the area needed for the pool and decks is \(A = (L + 20)(W + 10) \) sq. ft.

What should be the length and width of the pool in order that the project takes up the least area? To do this, you must minimize the area \(A = (L + 20)(W + 10) \).

Because \(A \) is in terms of two variables, you must do something to get an expression for \(A \) in terms of one variable before you can take derivatives and use calculus to minimize \(A \).