(10) I. Suppose \(A = \begin{bmatrix} 0 & 3 & -6 & 6 & 0 & -5 \\ 3 & -7 & 8 & -5 & 3 & 9 \\ 3 & -9 & 12 & -9 & 3 & 15 \end{bmatrix} \)

A. If \(\text{col } A \) is a subspace of \(\mathbb{R}^m \), what is the value of \(m \)?

B. If \(\text{nul } A \) is a subspace of \(\mathbb{R}^m \), what is the value of \(m \)?

(5) II. Give an example of a two-dimensional subspace of \(\mathbb{R}^4 \). Use correct mathematical notation to describe it.
III. If \(A = \begin{bmatrix}
1 & -1 & 0 & 3 & -2 \\
0 & 1 & 0 & -4 & 7 \\
0 & 0 & 1 & 0 & 6 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}, \)

A. Find a basis for \(\text{Col } A \).

B. Find a basis for \(\text{Nul } A \).

C. What is the dimension of \(\text{Col } A \)?

D. What is the dimension of \(\text{Nul } A \)?

E. What is the rank of \(A \)?
(10) IV. If $T : \mathbb{R}^2 \to \mathbb{R}^2$ reflects points through the line $x_1 = x_2$,

A. What is the determinant of the standard matrix of the linear transformation T?

B. How many pivot positions does this matrix have?

(5) V. Because $AA^{-1} = I$, it follows that $(\det A)(\det A^{-1}) = \det I$. If $A = \begin{bmatrix} 7 & 1 & 1 \\ 0 & 2 & 5 \\ -7 & -1 & 1 \end{bmatrix}$, calculate $\det A^{-1}$.
VI. Suppose that B is obtained from A by interchanging the first two rows of A, and that $\det(A) = \det(B)$. What is the value of $\det(A)$?

VII. Give an example of a matrix A whose null space, $\text{Nul } A$, is a straight line in \mathbb{R}^3.

(10) VIII. Compute the area of the parallelogram whose vertices are the points
(4, 5), (1, 1), (2, 4), and (3, 2).

(10) IX. Suppose \(\mathbf{A} \mathbf{B} = \begin{bmatrix} -3 & 7 \\ 2 & 4 \end{bmatrix} \) and \(\mathbf{B} = \begin{bmatrix} 10 \\ 0 \end{bmatrix} \). Find \(\mathbf{A} \).
(15) X. Consider the production model \(x = Cx + d \) for an economy with two sectors, where

\[
C = \begin{bmatrix}
0.0 & 0.5 \\
0.6 & 0.3
\end{bmatrix}.
\]

A. Compute the matrix \(I - C \).

B. Compute the inverse of the matrix \(I - C \).

C. Use this inverse to determine the production level necessary to satisfy the final demand \(d = \begin{bmatrix} 20 \\ 10 \end{bmatrix} \).

(5) XI. TRUE OR FALSE? (Don't guess! The number of incorrect responses will be subtracted from the number of correct ones. Thus, random guessing earns you no points at all.)

______ 1. If \(A \) is a \(2 \times 2 \) matrix with a zero determinant, then one column of \(A \) is a multiple of the other.

______ 2. It is possible to have two matrices \(A \) and \(B \) that are invertible, but their product is not invertible.

______ 3. If \(AB = AC \), then \(B = C \) for all matrices \(A \), \(B \), and \(C \).

______ 4. If \(H \) is a subspace of \(\mathbb{R}^m \) and \(\dim(H) = 4 \), then \(m \) must be greater than or equal to 4.

______ 5. If \(H \) is a subspace of \(\mathbb{R}^m \) and \(\dim H = 4 \), then \(H \) could have a basis with 2 elements.