1. Suppose \[\begin{bmatrix} -8 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_5 \begin{bmatrix} 4 \\ 0 \\ 0 \\ -3 \\ 1 \end{bmatrix}, \] where \(x_3 \) and \(x_5 \) are free, is the solution \(\mathbf{v}_h \) of the homogeneous matrix equation \(B \mathbf{x} = \mathbf{0} \) for some matrix \(B \). Also, let \(\mathbf{v}_1, \mathbf{v}_2, \ldots \), be the column vectors of \(B \).

1A. You can not tell from the above info how many rows \(B \) has. But how many columns must \(B \) have, and how do you know?

The six rows in the vectors above tell us the variables are \(x_1, x_2, \ldots, x_6 \) one for each column of \(B \). If \(B \) has 6 columns.

1B. Is the set \(\{ \mathbf{v}_1, \mathbf{v}_2, \ldots \} \) of column vectors of \(B \) linearly independent? Explain in terms of the definition of LI (that is, consider the solutions of \(x_1 \mathbf{v}_1 + x_2 \mathbf{v}_2 + \cdots = \mathbf{0} \)).

No. In order to be a LI set, the only solution to \(x_1 \mathbf{v}_1 + x_2 \mathbf{v}_2 + \cdots + x_6 \mathbf{v}_6 = \mathbf{0} \) must be the trivial solution, that is, \(x_1 = \cdots = x_6 = 0 \). But since \(x_2 \) and \(x_5 \) are free, this \(\mathbf{v}_h \) has non-trivial solutions.

1C. Use the equation \(x_1 \mathbf{v}_1 + x_2 \mathbf{v}_2 + x_3 \mathbf{v}_3 = \mathbf{0} \) to express \(\mathbf{v}_1 \) as a specific linear combination of the other column vectors, or explain why this is impossible.

We need some values of \(x_1, \ldots, x_6 \) which satisfy this equation and where \(x_i \neq 0 \). There are many ways to do this. For example, let \(x_2 = x_4 = 1 \). Then we also have \(x_1 = -81 + 41 = -40, x_2 = 0, x_3 = 0 \), and we can obtain \(\mathbf{v}_1 = -\mathbf{40} + \mathbf{0} + \mathbf{1} = \mathbf{1} \) and \(\mathbf{v}_2 = \mathbf{1} + \mathbf{0} = \mathbf{1} \).

1D. Express \(\mathbf{v}_2 \) as a linear combination of the other column vectors, or explain why this is impossible.

\[\text{Impossible: if } \mathbf{v}_2 = \alpha \mathbf{v}_1 + \beta \mathbf{v}_2 + \gamma \mathbf{v}_3 + \delta \mathbf{v}_4 \text{ then } \delta = \alpha \mathbf{v}_2 + \beta \mathbf{v}_3 + \gamma \mathbf{v}_4 = \mathbf{0} \text{, a solution of } B \mathbf{x} = \mathbf{0} \text{ in which } x_2 \neq 0 \] for \(\alpha, \beta, \gamma, \delta \) real numbers.

1E. Let \(\mathbf{b} = 7 \mathbf{v}_1 + 6 \mathbf{v}_2 - 12 \mathbf{v}_4 \) in the following two questions:

1E(i). Express \(\mathbf{b} \) as a linear combination of the column vectors of \(B \) without using \(\mathbf{v}_4 \) (by replacing \(\mathbf{v}_4 \) so we have a LC of the other column vectors).

\[\text{We first need to express } -12 \mathbf{v}_4 \text{ in terms of the other columns.} \]

Now, if \(x_5 = 1 \) and \(x_3 = 0 \), we get \(x_1 = -8 x_3 + 4 x_5 = -80 + 41 = 49 \), \(x_2 = 0, x_3 = 0 \), \(x_4 = -3 x_5 = -3, x_5 = 1, x_6 = 0 \).

\[\text{so } 49, -3, -49, 0 \text{ is a solution of } B \mathbf{x} = \mathbf{0} \text{ in which } x_2 \neq 0 \]

1E(ii). Can you express \(\mathbf{b} \) as a linear combination of the column vectors of \(B \) without using \(\mathbf{v}_2 \)? Explain your answer. No, since \(\mathbf{v}_2 \) is not a LC of the other columns.

Better: If \(B \) is a LC of other columns, then \(\mathbf{b} = B \mathbf{v}_2 \) (i.e., all columns) \(-12 \mathbf{v}_4 \); then the last equation gives

1 Challenge Bonus Question: Let \(m \) be the number of rows of \(B \). Suppose \(B \mathbf{x} = \mathbf{c} \) does not have a solution for every \(\mathbf{c} \) in \(\mathbb{R}^m \). What is the RREF of \(B \), where \(m \) is as small as possible?

We have \(\begin{cases} x_1 + 8 x_3 - 4 x_5 = 0 \\ x_2 + 3 x_3 = 0 \\ x_4 + 3 x_5 = 0 \\ x_6 = 0 \end{cases} \) from \(\mathbf{v}_1 \); in RREF(\(B \)) is

\[\begin{bmatrix} 1 & 0 & 0 & -4 & 0 \\ 0 & 1 & 0 & 3 & 1 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix} \]

Then we add a row of \(0 \)'s to ensure \(B \mathbf{x} = \mathbf{c} \) might be inconsistent.