(10) I. The distance, s, a car has traveled on a trip is shown in the table as a function of the time, t, since the trip started.

<table>
<thead>
<tr>
<th>t (hours)</th>
<th>0</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>s (km)</td>
<td>0</td>
<td>3</td>
<td>12</td>
<td>27</td>
<td>48</td>
<td>75</td>
<td>95</td>
</tr>
</tbody>
</table>

A) Find the average velocity of the car between $t = 2$ hours and $t = 10$ hours.

B) Estimate the velocity of the car at $t = 5$ hours.
(20) II. Evaluate the limits if they exist. If they do not exist, explain why not:

A. \[\lim_\limits{h \to 0} \frac{(4 + h)^2 - 16}{h} \]

B. \[\lim_\limits{x \to \infty} \frac{4x^3 - 3}{x^2 + 6x^3} \]

C. \[\lim_\limits{h \to 0} \frac{3h}{h} \]

D. \[\lim_\limits{h \to 0} \frac{h}{h} \]
III. If \(g(v) \) is the fuel efficiency, in kilometers per liter, of a car going at \(v \) kilometers per hour,

A) what are the units of \(g'(90) \)?

B) What is the practical meaning of the statement \(g'(60) = -0.63 \)?

IV. Find the equation of the tangent to the graph of the function \(f(x) = 5x^3 - 2 \) at the point whose x-coordinate is 1.
(10) V. Sketch below a graph of a function \(f \) with the following properties:

1) The domain of \(f \) is \([-5, 5]\).
2) \(f' \) is negative between \(-3\) and \(3\).
3) \(f \) is concave down on the interval \([-5, 0]\).
4) \(f'' \) is nonnegative on the interval \([0, 5]\).
5) \(f \) increases on the intervals \([-5, -3]\) and \([3, 5]\).
6) \(f'(-3) = f'(3) = 0 \).
VI. Sketch below a graph of a function \(f \) with the following properties:

1) The domain of \(f \) is \([-2, 2]\).

2) \(f \) is continuous at \(x = 1 \), but \(f \) is not differentiable at \(x = 1 \).

3) \(f \) is not continuous at \(x = 0 \).
(32) VII. Find the derivatives of the following functions:

A) \[t^4 - 2\sqrt{t} \]

B) \[\frac{x^2 + 5x}{x^2} \]
C) \(7t - 2t^{3/4}\)

D) \(\frac{1 - 3e^x}{e^x}\)