NAME:

Show ALL your work CAREFULLY.

The graph of a function \(s(t) \) is given below.

(i) Find \(s'(1) \) and \(s(3) \).

Since the slope of the tangent to the graph of \(s(t) \) at \(t = 1 \) is equal to 1, we have \(s'(1) = 1 \). The number \(s(3) \) is simply the value of \(s \) at \(t = 3 \) and therefore \(s(3) = 1 \) for \((3, 1)\) is on the graph of \(s(t) \).

(ii) Find \(\lim_{t \to 2} s(t) \) if the limit exists.

The function \(s(t) \) is continuous at \(t = 2 \) and \(s(2) = 2 \). It follows that \(\lim_{t \to 2} s(t) = 2 \).

(iii) Find \(\lim_{t \to 2} s'(t) \) if the limit exists.

The graph of \(s(t) \) does NOT have a well-defined tangent at \(t = 2 \). The limit \(\lim_{t \to 2} s'(t) \) does NOT exist.

(iv) Sketch the graph of \(s'(t) \), the derivative function of \(s(t) \).