Answer Key for Quiz 2 (section B)

1. If \(f(x) = \sqrt{2x + 1}, \) then \(f(x + h) = \sqrt{2(x + h) + 1}, \) so the limit we have to work out is

\[
f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} = \lim_{h \to 0} \frac{\sqrt{2x + 2h + 1} - \sqrt{2x + 1}}{h}.
\]

To do this we use the conjugate trick:

\[
f'(x) = \lim_{h \to 0} \frac{\sqrt{2x + 2h + 1} - \sqrt{2x + 1}}{h} \cdot \frac{\sqrt{2x + 2h + 1} + \sqrt{2x + 1}}{\sqrt{2x + 2h + 1} + \sqrt{2x + 1}}
\]

\[
= \lim_{h \to 0} \frac{2h}{\sqrt{2x + 2h + 1} + \sqrt{2x + 1}}
\]

\[
= \frac{2}{2\sqrt{2x + 1}}
\]

\[
= \frac{1}{\sqrt{2x + 1}}.
\]

So this function has the peculiar property that its derivative equals its reciprocal. In fact the only functions with this property are \(f(x) = \pm \sqrt{2x + a} \) for some constant \(a. \)

2. \(g(x) \) is perfectly flat (within the limits of my artistic ability) for \(x = B, \) \(x = D \) and \(x = F, \) so these are all the places where \(g'(x) = 0. \) \(g(x) \) is increasing for \(x < B \) and for \(D < x < F, \) so \(g'(x) \) is positive only for these values of \(x. \) \(g(x) \) is decreasing for \(B < x < D \) and for \(x > F, \) so \(g'(x) \) is negative for those values of \(x. \) \(g(x) \) is also almost flat for \(|x| \) large—it has a very small positive slope if \(x \) is a large negative number, and a very small negative slope if \(x \) is a large positive number. Therefore \(g'(x) \) must approach 0 from above as \(x \to -\infty \) and from below as \(x \to \infty. \) All this forces \(g(x) \) to have two peaks (local maximums) which are approximately at \(A \) and \(E, \) and two valleys (local minimums) which are approximately at \(C \) and \(G. \) Because \(g(x) \) appears to be an even function (symmetric about the \(y \)-axis), \(g'(x) \) will be an odd function (symmetric through the origin). So the graph of \(g'(x) \) must look about like this: