1. Suppose an economy has three producing sectors: agriculture, meats, and processed foods. The open sector consists of people who just consume ("eat") all these foods. The four sectors are thus \(A, M, P \) and \(E \), respectively. Suppose to produce one unit of output, \(A \) requires 0.22 units of its own output, and 0.13 units of \(M \) and 0.017 units of \(P \). Making one unit of \(M \) requires 0.19, 0.11, and 0.08 units of \(A, M \), and \(P \), resp., and a unit of \(P \) consumes 0.1, 0.07 and 0.3 units of \(A, M \), and \(P \), resp. The final demand by the \(E \) sector is 40, 30, and 80 units of \(A, M \), and \(P \), resp.

1A. Find the consumption matrix \(C \).

\[
C = \begin{bmatrix}
A & 0.22 & 0.11 & 0.17 \\
M & 0.13 & 0.11 & 0.07 \\
P & 0.10 & 0.08 & 0.3
\end{bmatrix}
\]

1B. Find \(I - C \) and write it here; store it as \([B]\) in your calculator.

\[
(I - C) = \begin{bmatrix}
0.78 & -0.19 & -0.10 \\
-0.10 & 0.89 & 0.07 \\
0.10 & -0.08 & 0.70
\end{bmatrix}
\]

\(I \) is the identity matrix; \(C \) is the consumption matrix. \(I - C \) is the matrix that describes the excess demand, and \(B \) is the \(n \times n \) matrix that describes the excess demand for the \(n \) sectors.

1C. Use your calculator to find \((I - C)^{-1}\) and write it here. (Just use \([B]\) and the \("-1\") key)

\[
(I - C)^{-1} = \begin{bmatrix}
1.363 & 0.311 & 0.226 \\
0.216 & 1.183 & 0.149 \\
0.219 & 0.180 & 1.498
\end{bmatrix}
\]

1D. Let \(d \) be the final demand vector. In terms of \(C \) and \(d \), what is the equation which we set up to find the production vector \(x \)?

\[
\hat{x} = C\hat{x} + d
\]

Note: a "during the quiz" request to set calculators to show THREE decimal places.

1E. Find the production vector \(x \). (Hint: put the final demand vector \(d \) into your calculator as a matrix (say \([D]\)) and do an appropriate matrix multiplication.

\[
(I - C)^{-1} \hat{d} = \begin{bmatrix}
B \\
D
\end{bmatrix} = \begin{bmatrix}
81.918 \\
56.087 \\
132.398
\end{bmatrix}
\]

1F. BONUS! It turns out that \((I_3 + C + C^2 + C^3 + C^4 + C^5)\) \(d \) is \(\begin{bmatrix}
81.154 \\
55.618 \\
131.592
\end{bmatrix}\). What is the connection between this fact and your work in (1A-1E)?

We mentioned in class that (given the right conditions on \(C \))

\[
\lim_{n \to \infty} \left(I_3 + C + C^2 + C^3 + \cdots + C^n \right) \hat{d} = (I - C)^{-1} \hat{d}
\]

so \((I_2 + C + C^2 + \cdots + C^5)\) \(d \) should be an approximation to \((I - C)^{-1} \hat{d} \) and indeed the vectors in 1E & 1F are close.
2. Let \(\mathbf{A} = \begin{bmatrix} 5 & 6 & -6 \\ 3 & 8 & -6 \\ 3 & 6 & -4 \end{bmatrix} \).

2A. It's a fact that \(\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \) is an eigenvector of \(\mathbf{A} \). What is the corresponding eigenvalue? (An easy calculation)

Multiply \(\mathbf{A} \) by \(\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \) to find \(\lambda \):

\[
\mathbf{A} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 5 \\ 5 \\ 5 \end{bmatrix}, \text{ so } \lambda = 5
\]

2B. It's also true that \(\lambda = 2 \) is an eigenvalue of \(\mathbf{A} \). If possible, find matrices \(\mathbf{P} \) and \(\mathbf{D} \) that show \(\mathbf{A} \) is diagonalizable, or explain why \(\mathbf{A} \) is not diagonalizable. Show all your work.

Let's find a basis for the eigenspace of 2. (If the dimension is 2, great. Otherwise either 1) \(\dim(\text{eigenspace}(2)) = 2 \) or 2) there's another eigenvector or 3) \(\mathbf{A} \) won't be diagonalizable.)

\[
(\mathbf{A} - 2\mathbf{I}) = \begin{bmatrix} 3 & 6 & -6 \\ 3 & 6 & -6 \\ 3 & 6 & -6 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & -2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}
\]

And a basis for the nullspace of THIS matrix is \(\left\{ \begin{bmatrix} -2 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix} \right\} \), which is a basis for the eigenspace of \(\lambda = 2 \).

So \(\mathbf{A} \) is diagonalizable and \(\mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1} \)

Where \(\mathbf{P} = \begin{bmatrix} 1 & -2 & 2 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \) and \(\mathbf{D} = \begin{bmatrix} 5 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} \) (for example)