1. Suppose that \(\mathbf{v}_1 = \begin{bmatrix} 3 \\ -4 \\ 5 \end{bmatrix} \), \(\mathbf{v}_2 = \begin{bmatrix} 3 \\ 1 \\ -1 \end{bmatrix} \) and \(\mathbf{v}_3 = \begin{bmatrix} 1 \\ x \\ y \end{bmatrix} \); let \(\mathbf{s} = \begin{bmatrix} -11 \\ 18 \\ 51 \end{bmatrix} \).

1a. Explain why \(\mathbf{v}_1 \perp \mathbf{v}_2 \).

1b. Find a unit vector in the direction of \(\mathbf{v}_2 \).

1c. Find \(x \) and \(y \) which make \(\mathcal{B} = \{ \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \} \) an orthogonal basis of \(\mathbb{R}^3 \). (Use good linear algebra techniques; your answer will involve a RREF).

1d. Use the formulas developed in class for orthogonal bases to find \(\alpha_2 \) for which \(\mathbf{s} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \alpha_3 \mathbf{v}_3 \). (You do not have to find \(\alpha_1 \) and \(\alpha_3 \).)

2. If \(A = \begin{bmatrix} 2 & 3 & 3 & 2 \\ 1 & 2 & 1 & 3 \\ 2 & 1 & 5 & -6 \\ 2 & 1 & 1 & 2 \end{bmatrix} \) then \(\text{RREF}(A) \) is \(R = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0 \end{bmatrix} \). Find a basis for each of the following. Write vectors horizontally where appropriate.

2a. \(\text{Col}(A) \)
2b. \(\text{Col}(R) \)

2c. \(\text{Row}(A) \)
2d. \(\text{Row}(R) \)

2e. Express \(r_3 \) (i.e., row 3) of \(A \) as a linear combination \(r_3 = xr_1 + yr_2 + zr_4 \) of the other three rows of \(A \). (Hint: you will be on familiar ground if you write the vectors vertically to solve the problem; find \(x \) \(y \) and \(z \). Or explain why there are no such scalars. Use good linear algebra methods.)