1. Let \(B = \begin{bmatrix} 12 & -12 \\ 6 & -5 \end{bmatrix} \).

1A. Find the characteristic polynomial of \(B \). Show all your steps.

1B. What, if any, are the eigenvalues of \(B \)?

1C. What number \(m \) should the “6” in \(B \) be replaced with, so that the resulting matrix has \(\lambda = 0 \) as an eigenvalue? (The other eigenvalue will be new, too). How did you find \(m \)?

2. Let \(A = \begin{bmatrix} 2 & 2 & -2 \\ 1 & 1 & 2 \\ 1 & -2 & 5 \end{bmatrix} \).

2A. It’s a fact that \(v = \begin{bmatrix} -5 \\ 5 \\ 5 \end{bmatrix} \) is an eigenvector of \(A \). Find the eigenvalue by direct computation of \(Av \).

2B. It’s a fact that \(\lambda = 3 \) is an eigenvalue of \(A \). Find a basis for its eigenspace.

2C. What is the dimension of the eigenspace in (2B)?