Math 105a
Quiz 8
2/6/04

Please show all your work in order to receive partial credit.

1. Find derivatives for the following functions.

 (a) \(f(x) = 5^x + x \)
 \[f'(x) = (\ln 5)5^x + 1 \]

 (b) \(f(x) = 4 \cdot 2^x + x^3 - 3^x \)
 \[f'(x) = (4 \ln 2)2^x + 3x^2 \]

 (c) \(f(x) = e^x + x^e + (e^3)^x \)
 \[f'(x) = e^x + e^{x-1} + (\ln e^3)(e^3)^x = e^x + e^{x-1} + 3e^{3x} \]

2. Consider \(f(x) = 4 + 2x - e^x \).

 (a) For what value of \(x \) is \(f'(x) = 0 \)?
 \[f'(x) = 2 - e^x \]
 Set \(f'(x) \) equal to 0 and solve for \(x \):
 \[2 - e^x = 0 \]
 \[e^x = 2 \]
 \[x = \ln 2 \]

 (b) On what interval is \(f \) increasing?
 From (a) we know that \(f'(\ln 2) = 0 \). We can create a sign chart to determine the interval for which \(f' \) is positive.

 \[f' \]
 \[+ \quad - \]
 \[f \quad \text{increasing} \quad \text{decreasing} \]

 \[f'(x) > 0 \] for \(x < \ln 2 \). Therefore, \(f \) is increasing on \((-\infty, \ln 2)\).

 (c) On what interval is \(f \) concave down?
 \[f''(x) = -e^x < 0 \] for all values of \(x \). Therefore, \(f \) is concave down for all real numbers.