Let $A = \begin{bmatrix} 2 & 5 & 10 & -6 & 12 \\ 1 & 2 & 5 & -3 & 6 \\ 3 & 10 & 15 & -8 & 14 \\ 1 & 3 & 5 & -2 & 2 \end{bmatrix}$ and $b = \begin{bmatrix} 11 \\ 7 \\ 7 \\ 2 \end{bmatrix}$; then RREF of $[A|b]$ is $\begin{bmatrix} 1 & 0 & 5 & 0 & -6 & 7 \\ 0 & 1 & 0 & 0 & 0 & -3 \\ 0 & 0 & 1 & -4 & -2 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$.

1A. Use the above information to express all solutions of $Ax = b$ in the form $p + v_h$ where p is a particular solution of $Ax = b$ and v_h represents all solutions of the corresponding homogeneous equation.

1B. In terms of the definition of linearly independent, do the columns of A form a linearly independent set? Explain your answer.

1C. Label the columns of A as a_1, a_2, \ldots, a_5. Show explicitly how to express a_5 as a linear combination of the first four columns. Give two different ways to do this, one of which involves a non-zero weight for column a_3, while the other does not use a_3 (ie, its weight is 0). (Write your answers using the symbols a_1, a_2, \ldots, a_5; don’t copy over all those columns of numbers).

1D. Explain why column a_2 can not be written as linear combination of the other four columns.

1E. Do the columns of A span \mathbb{R}^4? Why or why not.