Please show all your work in order to receive partial credit.

1. Consider the function f graphed below.

 \[f' \]

 \[a \quad b \]

 (a) For what values is $f'(x) = 0$?

 $f'(x) = 0$ at $x = a$, b, and 0

 (b) On what interval(s) is $f'(x) > 0$?

 $f' > 0$ on $(a, 0)$ and $(0, b)$ since f is increasing on those intervals

 (c) On what interval(s) is $f'(x) < 0$?

 $f' < 0$ on $(-\infty, a)$ and (b, ∞) since f is decreasing on those intervals

 (d) Determine the values of $\lim_{x \to \infty} f(x)$ and $\lim_{x \to -\infty} f(x)$. Use this information to determine the value of the slope of f when $|x|$ is large.

 \[
 \lim_{x \to \infty} f(x) = 0 \quad \text{and} \quad \lim_{x \to -\infty} f(x) = 0.
 \]

 In other words, $f(x)$ has a horizontal asymptote of $y = 0$. Therefore, the slope of f will be close to zero for $|x|$ large, since f looks flat to the far left and right of the graph. In addition, since $f'(x) < 0$ on $(-\infty, a)$ and (b, ∞) it follows that the graph of $g'(x)$ must approach the x-axis from below as $x \to \infty$ and as $x \to -\infty$.

 (e) Sketch a graph of f' below.

 \[f'' \]

 \[a \quad b \]

 2. Use the power rule to find derivatives for the following functions.

 \[
 \begin{array}{c|c|c}
 (a) f(x) = x^{13} & (b) f(x) = \frac{1}{x^3} = x^{-3} & (c) f(x) = \sqrt[3]{x} = x^{1/3} \\
 f'(x) = 13x^{12} & f'(x) = -3x^{-4} = -\frac{3}{x^4} & f'(x) = \frac{1}{3}x^{-2/3} = \frac{1}{3\sqrt[3]{x^2}}
 \end{array}
 \]