1. If \(y = ax^8 + bx^4 + cx^2 \), then
\[
\frac{dy}{dx} = 8ax^7 + 4bx^3 + 2cx
\] and
\[
\frac{d^2y}{dx^2} = 56ax^6 + 12bx^2 + 2c.
\]
Plugging all this into the differential equation \(x^2 \frac{d^2y}{dx^2} - 5x \frac{dy}{dx} + 8y = x^8 \) we get
\[
x^8 = x^2 (56ax^6 + 12bx^2 + 2c) - 5x (8ax^7 + 4bx^3 + 2cx) + 8 (ax^8 + bx^4 + cx^2)
= 56ax^8 + 12bx^4 + 2cx^2 - 40ax^8 - 20bx^4 - 10cx^2 + 8ax^8 + 8bx^4 + 8cx^2
= 24ax^8.
\]
Since this is supposed to hold for all \(x \), we must have \(a = 1/24 \). There are no restrictions on \(b \) and \(c \) since all those terms cancelled. In fact, every solution of this differential equation has the form
\[
y = \frac{1}{24} x^8 + bx^4 + cx^2
\]
for some constants \(b \) and \(c \).

2. Since the density depends on the distance from Main Street, we have to slice the city along “streets” parallel to Main Street. A street \(x \) miles from Main Street has length \(4(1 - x) \) by similar triangles.

If the street has thickness \(dx \), then the number of people living on it is
\[
density \times \text{area} = 5000e^{1-x} 4(1-x) dx = 20000(1-x)e^{1-x} dx.
\]
The distance from Main Street varies between 0 and 1, but in two different directions. The population of the city north of Main Street is
\[
P_{\text{north}} = 20000 \int_0^1 (1-x)e^{1-x} dx,
\]
and the population south of main street is exactly the same, so the total population of the city is
\[
P = 40000 \int_0^1 (1-x)e^{1-x} dx.
\]
To evaluate this we can first substitute \(w = 1 - x \), so that \(dw = -dx \) and hence \(-dw = dx \). If \(x = 0 \) then \(w = 1 - 0 = 1 \), and if \(x = 1 \) then \(w = 1 - 1 = 0 \), so we get
\[
P = 40000 \int_0^1 (1-x)e^{1-x} dx = -40000 \int_1^0 we^w dw = 40000 \int_0^1 we^w dw.
\]
Now integrate by parts with \(dv = e^w dw \) and \(u = w \), so that \(du = dw \) and \(v = e^w \) and we have
\[
P = 40000 \int_0^1 we^w dw = 40000 \left(we^w \big|_0^1 - \int_0^1 e^w dw \right)
= 40000 \left(w - 1 \right) e^w \big|_0^1
= 40000 \left[(1-1)e^1 - (0-1)e^0 \right] = 40000.