Movement, gesture, and meaning

A sensorimotor model for audience engagement with dance

William P. Seeley
Department of Philosophy, Bates College

Interpretation is often difficult in dance, since movements, unlike words, have few combinatory rules that guarantee a clear, unambiguous communication of ideas. Dance is unlike verbal language, for it usually credits meaning only vaguely. When it becomes more specific, it tends to move into the realm of pantomime, or sign language, or even to introduce verbal language.

(Sally Banes 1995, p. 28)

The neuroscience of dance is a vibrant, fast growing field which embodies the promise of a genuine and productive interdisciplinary rapprochement between neuroscience and art. The strength of this field lies in the way it ties explanations of dance to an understanding of the sensorimotor processes that underwrite our ordinary perceptual engagement with the environment (see Bläsing, Calvo-Merino, Cross, Jola, Honisch & Stevens 2012; Cross & Ticini 2011). We use our own bodies to model observed behaviours in everyday contexts. Motor simulation and motor mimicry enhance our capacity to interpret the goals, motives, and emotions of others. These processes are critical to action understanding, empathy, and the social coordination of behaviour. A range of recent studies demonstrate that these same processes enable us to recognise abstract dance movements as intentional actions with emotionally expressive and semantic content constitutive of their artistic meaning. In what follows I examine this research with an eye to the potential contribution neuroscience can make to our understanding of choreographed movements as artworks, as dances opposed to ordinary everyday actions.

1. What is the neuroscience of art?

There is a natural methodological fit between cognitive science and art. Artworks are communicative devices. They are stimuli composed of abstract sets of marks, sounds, movements, etc. that are intentionally designed to trigger affective,
perceptual, and cognitive responses in viewers constitutive of their expressive, aesthetic, and semantic content. This entails that questions about the understanding and appreciation of an artwork are, to a large extent, questions about the way consumers acquire, represent, manipulate, and use information carried in the formal structure of a work in order to recognise and evaluate its content (Carroll, Moore & Seeley 2012). Cognitive science, in its broadest sense, is the interdisciplinary study of the ways that organisms acquire, represent, manipulate, and use information in the production of behaviour. Theories and methods from cognitive neuroscience can therefore be used to model and explain the range of psychological processes that underwrite our engagement with artworks. Recent research in neuroaesthetics and neuroscience of art is dedicated to developing theories and methods to push this project forward (see Calvo-Merino, Jola, Glaser & Haggard 2008; Chatterjee 2012; Livingstone 2002; Seeley 2012; Zeki 1999).

A general model for neuroscience of art emerges from a standard story about artists’ methods. The sensory inputs to perceptual systems are replete with information about the structure and dynamics of the local environment. However, only a small fraction of this information is salient to our current behaviour at any given time. Selectivity is, therefore, a critical feature of perception. Evidence suggests that we solve this problem by focussing attention on minimal sets of features diagnostic for, or sufficient to determine the identity, shape, location, and affordances of objects and events in the environment (see Schyns 1998). Perceptual systems can, in this regard, be conceptualized as evolved mechanisms for detecting the task salience of features of the local environment, or selecting information from the flux of sensory inputs sufficient for object recognition and action. Artists develop a suite of formal strategies for culling sets of diagnostic features from ordinary perceptual experience and rendering them in a range of media, e.g. colour studies and sketches in the visual arts. These productive strategies work as communicative strategies because they are directed at sets of diagnostic features sufficient to trigger the ordinary operations of perceptual systems. This, in turn, entails a tight coupling between artists’ productive strategies and the operations of perceptual systems.

A significant amount of research in the neuroscience of art is devoted to teasing out the productive relationship between artists’ formal and compositional strategies and the neurophysiological operations of perceptual systems. However, correlations between these productive strategies and the operations of perceptual systems do not alone suffice to explain the artistic salience of the formal and compositional elements of an artwork. What one needs is a story that links explanations of how artworks work as perceptual stimuli to explanations of how we recognise and understand the artistic salience of their formal, expressive, and semantic features. This kind of an explanation is forthcoming in a standard
story about artists’ methods (Gombrich 1960). Consider the case of realistic depiction in landscape painting. Productive practices in this context include colour studies, formal studies, preliminary drawing studies, and a range of other strategies that are designed to recover sets of environmental features sufficient for adequate depiction. However, there is no ideal formal solution to the problem of depiction. Any of a range of formal/compositional strategies will suffice to render these environmental features. This entails that artists must choose how to execute their subject matter from a broad range of potential strategies. What are the constraints that guide these choices – the perceptual, expressive, aesthetic, and semantic effects, the artistically salient experiences and interpretations, that artists intend to induce in consumers. In this regard artworks can be conceptualised as attentional engines, or stimuli intentionally designed to direct attention to their artistically salient diagnostic features. Neuroscience is a tool that can be used to explore, model, and explain the psychological processes that underwrite the success of artworks as attentional devices. Therefore, neuroscience can contribute to our understanding of the artistic salience of the formal and compositional features of artworks.

2. What is the neuroscience of dance?

A set of core critical questions frame the application of this model for neuroscience of art to any particular artform. First, what are the general formal/compositional strategies constitutive of productive practices in that artform? Second, how are they used to carry and communicate diagnostic information? Third, what accounts for the artistic salience of these features and strategies? In framing these questions I do not mean to suggest that artforms are taxonomised by, or restricted to, particular media. Nor do I mean to imply that they are constrained by rigidly defined productive strategies. My claim is simply that these are questions that must be addressed in order to distinguish artworks from other classes of perceptual stimuli. Categories of art are flexibly defined by the range of productive practices associated with them at a time. These productive practices determine a common formal/compositional framework for artworks in that category and the nature of consumer engagement with them.

The building blocks of dance are expressive movements. We express any of a range of mental states, e.g. goals, intentions, or emotions, when we publically display them in our movements and postures. We orient our bodies towards the objects of our actions in everyday behaviour. Our bodies thereby display the explicit goals of our actions. Likewise, the character of our postures and movements carries information about the tenor of our actions, e.g. we are curious, cautious, or
eager to achieve a goal, which also indicates our emotional disposition towards the object of our actions, e.g. we are fascinated, frightened, or overjoyed respectively. Further, the expressive capacities of our bodies are not limited to explicitly goal directed actions. We often recognise the behaviours of others as more generally furtive, anxious, or cheerful. Therefore, postures and movements also carry information about the abstract inner dispositions and mental states of agents. Together these bodily expressions display where the current behavioural strategies of an agent sit on the continuum between approach and withdrawal, and signal to others how to engage with them in the social context of collective behaviour. The diagnostic features that enable us to recognise the expressive character of movements are biological motion cues, stereotyped and patterned relationships among joints that enable us to recognise and track animate movements. Dance, therefore, depends on a general gestural semantics built from biological motion cues.

Point-light displays can be used to illustrate the expressive power of biological motion cues. Point-light displays are constructed by attaching lights to a target agent (directly, digitally in post production, or in the production phase in animations) and adjusting the brightness and contrast in the resulting video so that these points of light are the only thing that remains visible (Johansson 1973). Viewers easily recognise the movements depicted in the display if the point-lights are attached to the joints of a human actor. This is also true for the movements of animals. However, it is not the case for the animated movements of abstract geometric figures. Nor is it the case if the point-lights are attached between joints on the limbs of biological actors. This demonstrates that the relative positions of, and dynamics among, the joints of biological actors are configural cues that carry information about the stereotyped patterns of biological movement that support ordinary behaviour.

Biological motion cues also carry information about the goals, intentions, and emotions of actors. Viewers are able to recognise the actions depicted in point-light displays, e.g. ball throwing or interpersonal dialog (Ahlstrom, Blake & Ahlstrom 1997). Viewers easily recognise gender, personality traits, and current emotional states in point-lights displays of a range of human gaits (Troje 2008). Viewers are able to recognise both who is speaking and the emotions expressed by speakers and listeners in point-light displays of interpersonal dialogue (Clarke, Bradshaw,

2. See retrieved April 1, 2004: http://www.biomotionlab.ca/Demos/BMLwalker.html. Claire Roether and her colleagues used a sample of 25 walkers to isolate a set of affective postural and biological movement cues which enabled them to generate computer animated artificial walkers with recognisably expressive gaits (Roether, Omplor, Christiansen & Giese 2009).
Field, Hampson & Rose 2005; Rose & Clarke 2009). Similarly, and more to the point of the current discussion, viewers are able to recognise the range of basic emotions expressed by choreographed dance movements in point-light displays, i.e. anger, fear, grief, joy, love, and disgust (Dittrich, Troscianko, Lea & Morgan 1996; Krumhansl & Schenk 1997). Point-light displays carry information about the dynamics of biological motion in the absence of any perceptual information about the appearance of the actors or the more general context, e.g. facial expressions, scene, setting, or sound. Although it is certainly the case that this broad range of perceptual information contributes to, and likely enhances, our capacity to recognise and understand expressive movements, these studies demonstrate that biological motion cues are alone diagnostic for, or sufficient to express, the goals, intentions, and emotions of an agent.

It has been argued that stereotyped expressive movements are decoupled from their natural contexts and used symbolically in a language of dance (Beardsley 1982; Langer 1953). However, the appeal to a language of dance is, at best, metaphorical. Natural languages are composed of abstract symbols stitched together into meaningful sequences by formal systems of strict syntactic rules. The meaningfulness of symbols employed in natural languages is, therefore, an artefact of the way they are used, of the way they can be combined and related given these grammatical rules. No such rules exist for an expressive language of dance, nor are any needed. Rather, we recognise the expressive qualities of dance movements because they are tuned to our natural capacity for kinaesthetic empathy, our capacity to recognise the goals, intentions, and emotions of other agents in the interplay of tension and relaxation in their ordinary, everyday movements. Further, violations of syntactic rules in natural language produce nonsense sentences. Not so for dance. The stylistic conventions that define different genres of dance, e.g. classical ballet, modern ballet, modern dance, etc. are rules of thumb, not strict syntactic rules. Violations of these rules do not make a work in comprehensible. Rather, they call on us to make sense of them, to fit them to the more general critical context of dance history. Violations of stylistic rules are, as result, a fertile source of expressiveness in dance.

Some knowledge of salient conventions is necessary to understand how recognisably expressive movements are being used in dance. These movements are, after all, abstracted from the context of everyday behaviour in all but the most literally narrative dance contexts. However, the way consumers learn the stylistic conventions that define categories of dance is nothing like the way we generally learn second languages. Second language learning is a long an arduous process that

3. See Carroll and Seeley (in press) for a similar argument against semiotic theories of film.
requires us to learn to forget the rules governing our primary language in order to become immersed in the rules governing another. Learning the conventions of dance, on the other hand, requires nothing more than our natural capacity to recognise and contextualise expressive movements. We may need help identifying the relevant art critical diagnostic cues at first. But, with some modicum of familiarity with these parameters, we can easily bootstrap our way into novel categories of dance.

The central claim of the neuroscience of dance is that our understanding of the expressive qualities of choreographed movements emerges from the role motor simulation, motor mimicry, and affective mimicry play in ordinary perceptual contexts. A range of studies demonstrate that these processes underwrite a more general capacity to use our own bodies to model the actions and mental states of others in everyday perceptual contexts (for a review see Decety & Grèzes 2006). Topologically organised areas in premotor cortex that code for the orientation and movement of muscles and limbs in ordinary actions are recruited in passive perceptual contexts where viewers merely observe the actions of another agent. Activation of these premotor areas is associated with increased electromyographical activity in the muscles that would be recruited to perform the perceived action. Further, stereotyped actions are associated with stereotyped emotional responses in ordinary contexts, e.g. smiles are associated with positively valenced emotional responses, frowns with negatively valenced emotional responses (Niedenthal 2007; Niedenthal, Barsalou, Winkielman, Krauth-Gruber & Ric 2005). These responses become paired to one another over time. The net result is that adopting an expressive posture triggers the activation of the same neural processes that would be activated with the associated gut reaction and emotional response. Finally, motor simulation and mimicry are used to generate forward models of perceptual changes associated with the predicted behaviours of others in ordinary contexts. These processes enable us to recognise, understand, and track the behaviours of other agents, and interpret their emotional states. These same processes are used in the more abstract context of dance to motivate an embodied understanding of character, and where appropriate story, constitutive of the expressive content of a work, e.g. the approach and withdrawal behaviour exhibited in the first and second pas de deux in Sergei Prokoviev’s Romeo and Juliet (expressing the hopefulness of new love and the unhappy desperation of their circumstances respectively), the pas de deux in George Balanchine's Diamonds, and the duets in Kate Weare’s Bridge of Sighs.4

All rights reserved
3. Art, aesthetics, and the neuroscience of dance

The grounding assumption of the neuroscience of art is that, through trial and error, artists develop formal strategies and vocabularies that are fine-tuned to the neurophysiological processes that underwrite our cognitive capacities as normal perceivers in ordinary contexts. In the case of dance, the claim is that the productive practices of choreographers and performers are fine-tuned to our capacities to recognise and understand the expressive qualities of biological movements. This claim is supported by a range of behavioural studies which demonstrate that premotor and limbic system processes underwrite our capacity to recognise the expressive content of a dance in the movements of dancers. These studies shed light on the way stereotyped choreographic strategies are used to communicate the expressive content of their works. In this section I turn to the third core critical question: what accounts for the artistic salience of expressive movements in the context of a dance?

There is a general assumption within neuroscience of art that the close coupling of formal/compositional strategies with perceptual capacities yields a focused, or enhanced perceptual experience in consumers, a heightened perceptual awareness constitutive of aesthetic experience (see for instance Zeki & Lamb 1994, p. 607). This assumption reflects a bias towards aesthetic theories of art. Aesthetic theories of art define artworks as artefacts intentionally designed to trigger aesthetic experiences in consumers (Davies 1991). A lot of philosophical ink has been spilled over the question of just what exactly an aesthetic experience is. I would like to bracket that issue here. I assume that the artistic salience of some works does lie in their capacity to induce aesthetic experiences in consumers. However, in this section I would like to rehearse a range of objections which demonstrate that neuroscience of dance doesn’t succeed as an aesthetic theory of art (even granting that in some cases the intuition is sound).

The first difficulty is a familiar problem from the philosophy of art. Whatever else we want to say about the generality of a theory of art, it ought to suffice to discriminate artworks and aesthetic experiences from non-art artefacts and ordinary experiences. Theories of art are, after all, theories about the nature of art and associated behaviours. Consider the claim that the artistic salience of artworks somehow lies in their capacity to focus our perceptual awareness on key structural features of experience. This has been a central claim of formalist theories of aesthetics, e.g. Immanuel Kant (1790); Clive Bell (1914); Jerome Stolnitz (1960); and Monroe Beardsley (1981). Sometimes this feature of aesthetic experience is referred to as disinterestedness, or attention focused on structural features of experience independent of either their representational content or their utility for the perceiver. The thought is that, through trial and error, artists develop formal strategies coupled to the neurophysiological structure of perceptual systems...
that focus, and thereby enhance, a consumer’s awareness of some phenomenal aspects of perceptual experience. In the case of dance these productive practices are thought to yield a heightened awareness of the expressive qualities of movement dynamics. The trouble is that laboratory stimuli and demonstrations are also explicitly fine-tuned for the focused perception of target features. For instance, point-light displays are an efficient means to achieve a focused, heightened awareness of the expressive qualities of movement dynamics. Therefore, on this account, point-light displays should be experienced as artworks because they should suffice to induce an aesthetic experience in experimental contexts. But they aren’t because they don’t. This problem illustrates a general difficulty for any attempt to explain the nature of art and aesthetic experience in terms of ordinary perceptual or cognitive processes: what, if anything, would then differentiate them from non-art artefacts and ordinary experiences?

Neuroscience of dance has emerged as a stand alone field in the context of research on the role of motor expertise in perception. The well developed motor expertise of expert dancers is coupled to well defined categories of perceptual stimuli. Consequently, measuring the perceptual sensitivity of expert dancers to a range of dance styles and genres has been used as a means to test the generality of motor expertise effects in perception. The canonical work in this regard is Beatriz Calvo-Merino’s fMRI study of perceptual differences between ballet and capoeira dancers (Calvo-Merino et al. 2005). Capoeira is a contemporary Brazilian dance form that is compositionally similar to, but formally distinct from, ballet – the leaps, spins, and duets of the former are choreographed from a unique set of formal movements derived from martial arts. Calvo-Merino and her colleagues measured the relative cortical activation among three groups of participants: dancers from the Royal Ballet of London, expert capoeira dancers, and non-dancers, while they watched clips of choreographed ballet and capoeira solos and duets. The results showed significant differences between all three groups. Ballet dancers showed heightened activation in premotor areas and parietal areas associated with action observation and kinaesthetic empathy for videos of ballet movements compared to capoeira dancers. Capoeira dancers showed heightened relative activation in premotor areas and parietal areas associated with action observation and kinaesthetic empathy for videos of capoeira movements compared to ballet dancers. The relative activation in target premotor and parietal areas was significantly lower among non-dancers than either ballet or capoeira dancers, and, more importantly, there was no significant difference between the two conditions for this group.

Calvo-Merino’s study is interesting and important. It suggests a neuroscientific method for studying the influence of particular stylistic conventions in our engagement with dance. However, the promise of the study comes with a caveat. The controls, naïve viewers who lacked salient motor expertise, were not sensitive
to perceptual differences necessary to discriminate ballet and capoeira from one another as categories of dance. Of course, the goal of the study was to explore motor expertise effects in perception, not the aesthetic responses of naive viewers to dance. Naive viewers do exhibit aesthetic responses to some types of abstract movement features (Calvo-Merino et al. 2008). However, and this is the critical point, non-dancers in the study were not perceptually sensitive to the biological motion cues diagnostic for the appropriate categories of art. This entails that non-dancers were not perceptually sensitive to those aspects of the choreographed movements hypothesised to be diagnostic for the artistic salience of particular works of dance. Therefore, it is not clear that kinaesthetic empathy is sufficient to provide viewers access to the range of artistic conventions necessary to recognise and understand choreographed movements as works of dance.

The problems identified here present a general challenge for the methodology of neuroscience of art. The identification of a close coupling between the formal/compositional structure of an artwork and the structure of perceptual systems is not alone sufficient to explain the artistic salience of the features of particular artworks. Although this may be a sound strategy for explaining how artworks perceptually communicate their content, it does not suffice to explain how consumers recognise the artistic salience of that content. Analogous difficulties arise when we turn to the dance side of neuroscience of dance. Consider Yvonne Rainer’s solo in Trio A and the duet in Merce Cunningham’s Septet (Atlas 2001). The female lead in Septet plays the role of an inanimate partner, expressively inert, manipulated like a marionette, wholly dependent on the support of the danseur. The focus of the dance is, as a result, the detached form, the kinaesthetics and dynamics, of her movements. Likewise, the generation that followed Merce Cunningham in New York embraced pure movement. The anti-expressionist flavour of the works performed in the early 1960s at the Judson Dance Theatre, like Trio A, embraced the often invisible, expressively neutral, repetitive, stereotyped movements of everyday activities. Of course the extreme expressive neutrality of the movements in these pieces is striking, and strikingly expressive in its own right. But, whatever their artistic salience, it is not identical to, nor adequately captured by focused attention on the perceptual experience of, their explicit expressive quality, neutrality. It lies somewhere else.

Sometimes conceptually difficult artworks like Septet and Trio A are singled out and set aside as aesthetic outliers. This is a common strategy used to handle counterexamples to aesthetic theories of art. Seen against the context of the broad range of aesthetic objects we favour in our everyday lives. e.g. design items and

All rights reserved
architectural spaces, this strategy may have some merit. But it is out of place within the context of the category “art.” The self-reflective conceptual play these works exhibit is a canonical artistic practice that has transparently defined our engagement with artworks since at least the advent of modernism in the mid-Nineteenth century, and arguably has covertly always defined art (Danto 1983).

4. Art, meaning, and perception

The crux of the problem for neuroscience of dance is that the expressive properties of choreographed movements are not generally ends in themselves, they aren’t alone the point of the work. Rather, they are a means for the expression of a range of ideas. Arthur Danto makes a distinction between what is seen and what is shown in our engagement with artworks that can be used to elucidate this point (Danto 2003a). What is seen in a work of visual art is what is explicitly visible in its surface, its formal properties and the depictive content that emerges from their compositional relationships. What is seen is transparently visible to any organism with perceptual capacities like ours, e.g. pigeons in Danto’s assessment (Danto 2003b). What is shown, in contrast, emerges from a relationship between what is seen and what Danto calls an atmosphere of theory, or the contextual background of artistic practices against which the work was constructed and within which it is engaged (Danto 1983). What is seen is a tool used by artists to communicate what is shown, the meaning, or perhaps better the content of the work. The diagnosticity of the formal features of a work, their artistic salience, is thereby a function of what is shown, not what is seen.

Danto’s classic example is a hypothetical exhibition of red canvases that he describes at the beginning of Transfiguration of the Commonplace (Danto 1983, p. 1). The first work in the show is a fictional painting of the Israelites crossing the Red Sea mentioned by Søren Kierkegaard in the aphorisms at the beginning of Either/Or (1843/1987, p. 28). Kierkegaard described the painting as a representation of the spiritual turmoil that haunted his life (apparently associated with the panic, fear, and claustrophobia of a displaced people being chased down the narrow corridor of a dried sea bed, closely pursued by the world’s most powerful army, towering walls of water threatening to collapse and drown them). This painting is followed by an anonymously painted abstract portrait called Kierkegaard’s Mood, a Suprematist composition by Kazimir Malevich called Red Square, a painting called Nirvana, a still life by an embittered disciple of Henri Matisse called The Red Table Cloth, a canvas grounded in red lead that Giorgione had intended to use for an unpainted masterpiece, and a rag from a garage workshop stained with red lead paint from a weekend project. These works are, at first
glance, perceptually indiscriminable red canvases. However, they are quite distinct artefacts. *Israelites Crossing the Red Sea*, I take it, isn’t much of an artwork, but it would be a philosophical curiosity of some value if it existed, an interesting intellectual artefact. The portrait of Kierkegaard, on the other hand, would be seen as a canonical example of early modernist expressionism. *Nirvana* would be of interest as a contemporary postmodernist painting that comments on attitudes towards religion (Danto tells us that “red dust” is a term used by detractors to refer to the Samsaric order that leads to Nirvana). The still life after Matisse is stylised and derivative. But perhaps it would be of art historical interest as an example of the value of originality in art (or its limits). Giorgione’s canvas is not an artwork. It would nonetheless be an interesting artistic artefact, a physical trace of his presence. The rag bears no relation to art at all. Of course, it is important to note that the works aren’t really perceptually indiscriminable. We could easily tell them apart. But, and this is Danto’s point in the end, whatever perceptual differences we would use to physically sort them one from another would not, in and of themselves, suffice to distinguish them from one another as the particular artworks that they are, or even mark them as belonging to one category of art or another.

Where do Danto’s distinctions leave us? An artist uses what is seen, or better perceived, to communicate ideas, to show consumers the content of her work. The content of a work need not be an explicit propositional meaning. It may be that the artist intends for the consumer to apperceptively reflect on some aspect of experience, or simply to enjoy the perceptible features of the work. Nonetheless, in each of these cases a consumer would have to tease out the relationship between what is seen and what is shown, the communicative intent of the work, in order to understand its artistic salience, in order to recognise it as the artwork it is, and even to understand how to engage with it in the first place. Let’s return to *Septet* again. Carolyn Brown describes the experience of dancing the piece as a feminist nightmare (Atlas 2001). The following interpretation of the piece emerges from Brown’s comment and a reading of Ann Daly’s, “The Balanchine Woman: Of Hummingbirds and Channel Swimmers” (Daly 1987). The romantic ballerina was a celebrity and the focus of attention in part because she was presented as enticing, alluring, and elusive. Analogously, the ballerina is the focus of attention in Balanchine’s modern ballets. But here her strength and independence is signalled by the athleticism of her postures and movements. The role of the danseur in this context is to display the ballerina’s strength. Her movements are framed and aided by his muscular control. He supports her poses and provides the extra energy necessary to facilitate her acrobatic movements…and herein lies both the art critical problem and the artistic salience of the work. The ballerina’s postures and movements are constrained, controlled, contorted, and coerced by the will of her masculine partner, some of which she could not accomplish without him.
This entails that she is not actually treated as a strong, independent character. Rather, she is passively displayed, presented as an object of manipulation and voyeuristic regard by a male choreographer. Against this art critical backdrop, the numbed neutrality of Carolyn Brown’s modernist performance in Septet is deeply expressive – it portrays the emotional retreat of a powerless participant in a coerced activity. A similar kind of story can be told about Trio A. Interpreted against the overwrought metaphysical and psychological weight of abstract expressionism and modern dance, the pedestrian playfulness of Yvonne Rainer’s movement in the piece is expressive of the mischievous reflective irreverence that defined early conceptual art. Seen against the conceptual backdrop of Balanchine’s modern ballet this irreverence can, in turn, be interpreted as an expressive act that wrests the strong individuality of the dancer away (or maybe better back) from the danseur.

These examples illustrate a functionalist account of artistic form (Carroll 1999; Carroll & Banes 1982). How do we delineate artistically salient features from the range of formal features and compositional relations present in a work? We ask ourselves why the work was made the way it was, what its purpose is, or how the formal choices made by the artist contribute to its content. In difficult cases we may have to engage in explicit interpretive activities in order to tease this out of the work. But in the vast majority of cases a tacit understanding of the general practices that define common categories of art, the stylistic conventions and productive practices that define schools of art, artistic movements, or the body of work of an individual artist, will suffice.

5. A sensorimotor model for audience engagement with dance

The presence of a heightened focused awareness of the expressive qualities of movement in our engagement with dance does not suffice to explain the artistic salience of the choreographed movements from which they are constructed. What matters is the semantic salience of these features, or how they contribute to the more general content of the work. The semantic salience of an artwork, in turn, is not an intrinsic property of any of its features. Rather it emerges from the context of our engagement with the work, from the range of artistic conventions that define artistic practices and consequently constrain artistic production. The challenge for neuroscience of dance is, therefore, to understand how choreographers and dancers use kinaesthetic empathy in the context of artistic conventions to express the content of the work. In what follows I will sketch out a sensorimotor model for audience engagement with dance derived from a diagnostic recognition framework for object recognition and a biased competition model for selective
attention. This model can serve as a framework for understanding how dance can communicate the artistic salience of its formal and compositional features.

The sensory inputs to perceptual systems are, as discussed above, replete with information about the local environment. Cognition is, in contrast, a limited capacity resource. Selectivity is, as a result, a critical feature of perceptual processing. This raises a question. How do we assign salience to local environmental features? One way is simple perceptual salience. Some features stand out because they are distinct from their surround, e.g. high colour contrast or sharp differences in the relative motion of a target and its surround. However, it is not always the case that the features salient to our current behavioural context are also the most perceptually salient. This entails that perceptual systems need an independent mechanism to bias perception to the behaviourally salient features of an organism’s local environment. Biased competition models for selective attention demonstrate that cortico-thalamic attentional networks bias perception by priming sensory systems to the expectation of features diagnostic for the identities, shapes, and affordances of task salient objects and their parts at particular locations, enhancing the perceptual encoding of expected targets and inhibiting the encoding of local distractors. Selective attention is, therefore, a mechanism through which we flexibly bias basic sensory processes to our current behavioural context on the fly relative to our changing needs in a dynamic environment.

Diagnostic features are defined as sets of sensory features sufficient to enable an organism to perceptually recognise the identity, shape, and affordances of objects and events in the local environment (Schyns 1998). Diagnosticity is a task specific notion (Palmer 1999). Altering our behaviour, changing a target task, changes the way we categorise objects and events. Changing the way we categorise objects and events alters the way we assign salience to its parts and features. Given the framework of a biased competition model for selective attention, this entails that changing the way we categorise an object or event quite literally influences the way we perceive it.

How do biased competition models propose that task salience is integrated into sensory information in goal directed behaviour? Feedback projections from prefrontal areas associated with spatial working memory and object recognition, e.g. dorsolateral prefrontal cortex (dLPFC), and premotor areas associated with the implementation of motor programs for motor preparation and planning, e.g. supplemental premotor (SMA) and premotor areas (PM), to areas throughout the visual system enhance the firing rates of populations of neurons that would encode for target objects and features at expected locations and inhibit the firing rates of populations of neurons that would encode for task irrelevant distractors (Kastner 2004; Schubotz & Von Cramon 2003). These processes include top
down projections to subcortical areas like the lateral geniculate nucleus (LGN) and pulvinar (PUL) in the thalamus and the superior colliculus (SC). LGN is the primary relay station for sensory information between the retina and the visual system. Pulvinar is reciprocally connected to SC and all areas of the visual system (Pessoa & Adolphs 2010). SC is a multisensory area involved in directing eye movements and the crossmodal integration of visual, auditory, and somatosensory information (Beck & Kastner 2009). Analogous stories can be told about the architecture of attention in auditory and somatosensory processing (MacLauchlan & Wilson 2010; Stein, Stanford, Wallace, Vaughan & Jiang 2004; Winer 2006). Affective processing influences perceptual processing via a similar cortico-amygdala network that includes reciprocal connectivity between areas associated with assessments of the predictive value and behavioural significance of objects and events, i.e. orbitofrontal cortex (OFC), visceromotor control and gut reactions, i.e. ventro-medial prefrontal cortex (vmPFC) and anterior cingulate cortex (ACC), and the amygdala (Duncan & Barrett 2007). Amygdala is reciprocally connected with the visual, auditory, and somatosensory systems. These cortico-thalamic and cortico-amygdala attentional networks are mechanisms through which cognitive assessments of object identity and behavioural context influence sensory processes at their very earliest stages. The result is an integrated, crossmodal biased competition model for perception that is a means to direct attention, encode the semantic, task, and emotional salience of objects and events, and facilitate embodied responses to affective and sensorimotor contingencies in the local environment.

What is the take home message for neuroscience of dance in this laundry list of neurophysiological processes? Artworks are attentional engines (Carroll, Moore & Seeley 2012; Carroll & Seeley in press; Rollins 2004). Object recognition is a goal directed task in which perceptual systems parse sensory inputs into salient cues and group them together into objects relative to available perceptual categories. Artworks are communicative devices that are designed to focus attention on minimal sets of perceptual cues diagnostic for their content. How might this work in practice? The conventions governing consumer engagement with artworks within a medium or genre are strong constraints on artists’ productive practices. Cues diagnostic for the categorical intentions of an artist, for the category of art an artist intends a work to belong to, e.g. modern dance, modern ballet, or capoeira, shape the attentional strategies adopted by consumers in their engagement with dance – instruct consumers what to look for and where to look for it. These diagnostic cues include sensorimotor cues which trigger the activation of motor programs that encode the kinaesthetics and dynamics of perceived choreographed movements in a genre. These processes, in turn, facilitate tracking expressive cues embedded in the postures and movements of the dancers, perceptual cues that trigger affective embodied appraisals of the expressive content of the work in consumers.
The artistic salience of these cues is determined by, and so only emerges in the context of, the role they play in communicating the content of the work, e.g. the expressive qualities of Carolyn Brown’s movements in *Septet*.

6. **The neuroscience of dance redux**

The sensorimotor model that I have proposed is not offered as a definition of dance. It is rather offered as a model for how the neuroscience of dance can contribute to our understanding of a range of artistic practices associated with the medium. The model resolves questions about how consumers discriminate artworks from non-artworks in dance contexts. The artistic salience of a dance does not lie in the expressive qualities of choreographed movements per se, but rather in the way these expressive qualities are used as communicative devices to convey the content of the work. E.g. the expressive neutrality of the woman’s part in the duet from *Septet* can be interpreted as a reflection on the relationship between the compositional structure of Balanchine’s modern ballets and our conception of gender roles in traditional dance genres, an interpretation suggested by the dancer herself (Atlas 2001).

What about questions raised by the observation of expertise effects in our sensorimotor engagement with dance? These are concerns that emerge from the observation that familiarity with the motor skills required to perform an action may be needed to recognise the sensorimotor contingencies constitutive of an embodied response to it. The integrated biased competition model for selective attention sketched above suggests an alternative possibility. Perhaps the pairing of generic motor programs that encode the kinaesthetics and dynamics of everyday actions with knowledge of the formal and compositional conventions governing different types of dance would suffice to bias perception to biological motion cues diagnostic for the expressive content of a particular dance – just as the conjunction of generic motor programs and general world knowledge do when we use sensorimotor process to track and predict the movements, actions, moods, and emotions of others in everyday contexts (see Calvo-Merino et al. 2008). If so a general knowledge of artistic conventions might suffice to bootstrap embodied responses to artistically salient expressive features of choreographed movements.6 Dance is a hard medium to understand in part because it is abstract, or, as Sally Banes argues, constraints on

production within the medium limit the clarity with which it can convey ideas. But
this is only part of the story. Dance history, the story of the conventions that define
categories of dance, is not transparently part of our everyday engagement with
public media in the same way that the history of painting is. This raises the possi-
bility that non-dancers may simply have lacked sufficient contextual information to
tease out what was shown in what was seen, to recognise the experimental stimuli
as exemplars of different categories of dance. Or, it may be the case that the dance
stimuli used lacked the compositional depth necessary to carry categorical artistic
salience for naïve viewers. One means to evaluate these possibilities would be to
include a control group of dance critics who were familiar with capoeira and ballet,
but were not themselves dancers, in an experiment with the same design. However,
independent of the validity of this alternative explanation of the performance of
non-dancers in Calvo-Merino’s study, the take home message in the proposed
model is that methodological objections to the neuroscience of dance, and neu-
roscience of art more generally, can be overcome by paying closer attention to the
full range of variables that contribute to our understanding of artistic salience in
ordinary contexts.

References

26(12), 1539–1548.

Program]. United States: PBS.

Neurocognitive control in dance perception and performance. *Acta Psychologica, 139*,
300–308.

observation and acquired motor skills: An fMRI study with expert dancers. *Cerebral
Cortex, 15*(8), 1243–1249.

doing? Influence of visual and motor familiarity in action observation. *Current Biology,

All rights reserved

