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ABSTRACT. In this lecture, we re-introduce the so-called torus homo-
topy groups of R. Fox. We generalize Fox’s construction and obtain
generalized Fox groups in which the generalized Whitehead product of
M. Arkowitz is again a commutator. The generalized Gottlieb group is
shown to be central in this generalized Fox group. Finally, we extend
this construction to transformation groups, generalizing a result of F.
Rhodes. Details will appear elsewhere.

1. INTRODUCTION

This paper is a write-up of the lecture given by the third author at the
International Conference on Homotopy Theory and Related Topics held at
the Korea University in Seoul, South Korea during Febraury 01 - 04, 2005.

In classical Nielsen fixed point theory (see e.g., (10]), the fundamental
group plays a crucial role. One of the first computational tools in comput-
ing the Nielsen number is the concept of the so-called Jiang subgroup of
the fundamental group. Furthermore, D. Gottlieb used Nielsen fixed point
theory to establish his theorem on the triviality of the center of the fun-
damental group of an aspherical complex of non-zero Euler characteristic.
In fact, the Jiang subgroup is the same as the first Gottlieb group. In [8],
D. Gottlieb introduced the evaluation subgroups of higher homotopy groups
and these subgroups are now known as the Gottlieb groups.
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In studying Nielsen fixed point theory for equivariant mappings, the no-
tion of an equivariant Jiang subgroup was introduced in [16]. This has since
been generalized to higher equivariant Gottlieb groups in [5]. Since deck
transformations are homeomorphisms of the universal cover covering the

identity map, one considers naturally the following group
G := {4 € Homeo(X)|n7 = ~n for some v € G},

where n : X — X is the universal covering of a G-complex X for a finite
group G. Identifying m;(X) with the group of deck transformations, it is
easy to see that

1w XG>

is a short exact sequence.

It turns out that G is isomorphic to o1(X,G), the first Rhodes group of
the transformation group (X, G) first defined in [12]. In fact, higher Rhodes
groups o,(X,G) had been defined in [13]. Unlike 01(X,G) which is an
extension of m1(X), the higher Rhodes groups o,(X,G) are not extensions
of m,(X) by G. Instead, the following sequence

1o 7(X) 2 on(X,G) - G—1

is exact. Here, 7,(X) denotes the n-th torus homotopy group first introduced
by R. Fox in [3] and further studied in [4]. The connection between Nielsen
fixed point theory and the first Rhodes group has led us to our further
investigation of the Fox groups and of the Rhodes groups. This results in
our work in [6] and [7].

This lecture reports some of the results obtained in [6] and in [7]. For sim-

plicity, all spaces in this paper are assumed to be well-pointed and compactly
generated.

2. FOX TORUS HOMOTOPY GROUPS AND THEIR GENERALIZATIONS

The classical Whitehead product [15] of a € m,(X) and € m,(X) is
an element [o, 8] in Mmin-1(X). In the special case when m = n = 1,
[, B] is simply the commutator. In [3] and in [4], R. Fox gave a geometric
interpretation of the Whitehead product. In doing so, he introduced a bigger
group in which the Whitehead product is again a commutator.
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Definition 2.1. Let X be a space and zg € X. Denoteby 7" = S x---x §!
(r-copies) the r-dimensional torus. For any positive integer n, the n-th Fox
(torus homotopy) group of X is defined to be

.

(X, o) = m(XT" ", T0),

where T is the constant map at zo. Here X7" " is the space of continuous

maps from 77! to X with the usual compact open topology.

We should point out that X T™~! is not the space of basepoint preserving
maps from 77! to X, which is not even of the same homotopy type. In
particular when n = 2, X5 ' denotes the free loop space AX and not the
loop space 2X. Moreoever, 71(X, zo) = m1(X, zo)-

R. Fox showed in [4] that 75,(X, zo) is completely determined by the ho-
motopy groups m;(X,zg) for i« < n and their Whitehead products. More
precisely, he proved the following result.

Theorem 2.2. Let X be a path connected space and zg € X. For any
positive integer n > 2, the sequence

n
0 — [Im(X)% - m(X) = T (X) - 1
=2

is split exact, where a; is the binomial coefficient ("_2]

i-2/

Since 7 coincides with m, it follows from this result that 7,,(X, z¢) is not
abelian in general. In [4], R. Fox showed that the Whitehead product in
Tman—1 of two elements a € 7w, 8 € Ty is a commutator when mp4n_1 1
embedded in 7 for k> m+n — 1.

Fox’s construction shows that, for example in the case n = 2, 7(X, zg) can
be interpreted as follows. Let F3 be the pinched two dimensional torus, i.e.,
F, is the quotient of S* x S by S! x {so} for some basepoint so € S*. Then
To(X,x0) = [F2,X], the set of homotopy classes of basepoint preserving
maps from Fy to X. In fact,

(X, zo) = [Z(S* U %), X] or more generally

X, 20) = (BT s, X].
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Let F, = T"/T™ ! be the (n-dimensional) pinched torus. It follows that
F, ~ Z(T™ ! U x). One can show that
n
SF1 ~ \/ (552,
i=2
With this re-interpretation, we re-establish Fox’s result as follows.
Theorem 2.3. Let X be a path connected space and zg € X. For any
positive integer n > 2, the sequence
0 — Tp-1(X) = Ta(X) 5 mo1(X) = 1

is split exact. Furthermore,

L1

Ta—1(2X) 2 [ m(X) .
=2

With respect to a fibration F' < E — B, we have the following
Theorem 2.4. For any positive integer k, t.‘;e‘r‘e is a long ezact sequence
. = R(Q"F) = Te(A"E) - me("B) B n(Q"IF) - - .
Now, it is straightforward to generalize 7,, as follows.

Definition 2.5. Let X be a space and zg € X. For any space W, the
W-Fox group of X is defined to be

mw(X, o) = [B(W u %), X].

It is clear that Ty reduces to 7, when W = T™~!. Moreover, if we let
W = S™1 then Tw (X, z0) = &n(X, o), the n-th Abe group of X studied
in [1].

Our main result in [6] is the following generalization of Fox’s result (The-
orem 2.3).

Theorem 2.6. For any path connected X,V and W, the following sequence
is split exact.

1= [(V x W)/V,9X] = 1vxw(X) S v(X) = 1

If W = A is a suspension, then [(V x W)/V,QX] is abelian and is iso-
morphic to [V AW, QX] x [W,QX].
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3. GENERALIZED WHITEHEAD PRODUCTS AND GENERALIZED GOTTLIEB
GROUPS -

In [8], D. Gottlieb introduced the evaluation subgroups of the higher
homotopy groups, now known as the Gottlieb groups. More precisely, the
n-th Gottlieb group G,(X) of a space X is given by

Gn(X) :=1Im (ev. : (XX, 1x) — mn(X, z0)),

where ev is the evaluation map. It is well known that G is central in m; and
for any a € G, and for any § € m,,, the Whitehead product [a, 8] = 0. By
replacing m, with 75, it is natural to ask whether the evaluation subgroup
is abelian and how it is related with the classical Gottlieb groups.

With respect to 7,,, we define the n-th Gottlieb-Fox group to be

Grn(X) :=Im (ev. : To(XX,1x) = (X, z0)).

In [6], we obtained the following result.

Theorem 3.1. The Gottlieb-Foz group is a direct product of ordinary Got-

tlieb groups. More precisely, for any positive integer n,
Gra(X) = [[ Gs(x)™,
i=1

where ; is the binomial coefficient ’::11) and G;(X) is the i-th Gottlieb
group of X. Furthermore, G7,(X) s central in 1,(X).

The Gottlieb groups have been generalized to very general settings. K.
Varadarajan [14] defined the generalized Gottlieb group G(£ A, X) as a sub-
group of the group [ZA, X] to be

G(EA, X) := Im(ev. : [A, (XX, 1x)] — [24, (X, 20)]).

In [11], K. Lim showed that G(ZA, X) is central in [ZA, X].

Similar to the classical Gottlieb groups, elements of the generalized Got-
tlieb group G(XA, X) have trivial generalized Whitehead products with el-
ements in any [XB, X|.

Recall that for any a € [£A, X] and any 8 € (B, X], M. Arkowitz [2]
introduced the generalized Whitehead product of & and 3 to be the element
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[, B] = [K'], where K’ : £(A A B) — X is induced by the map
K:=f1.¢g1.f.¢d:2(AxB)— X

which, when restricted to £A V I B, is homotopic to a constant. Here,
f:TA— X, g: LB — X are two maps representing « and 3 respectively.
The composites f' = f o Zpa, g = go Zpp, where Lpy : (A x B) — LA
and Lpp : (A x B) — LB, are maps from (A x B) to X. Using the
co-multiplication of (A x B), K is a well-defined map. '

In the spirit of [4], the following from [6] can be regarded as a reinterpre-
tation of Arkowitz’s generalized Whitehead product.

Theorem 3.2. Given a € [ZA, X] and 8 € [EB, X], the image of [a, B] in
TaxB(X) is the commutator of the image of a1 and the image of B~ in
TAXB(X)-

Using the projection A x B — A, we can regard [LA, X] as a subgroup of
[£(AxB), X]. Under this identification, we have the following generalization
of a result of C. Hoo who showed in [9] that G(Z A, X) is central in [LA, X].

Theorem 3.3. The generalized Gottlieb group G(XA, X), regarded as a sub-

group of Taxs(X), is central in Taxp(X) for any B. In particular, it is
central in [ZA, X].

4. RHODES GROUPS AND THEIR GENERALIZATIONS

Let G be a finite group and X be a G-complex. Choose a basepoint
zop € X. In [12], F. Rhodes extended the definition of the fundamental
group of a space to that of a transformation group (X, G). He then defined
higher homotopy groups of (X,G) in [13]. For any positive integer n > 1,
denote by Cp = {(t1,%2,. .- ,tn)} denote the n-dimensional cylinder, where
0 <t;<1andf; =t; (mod 1). Recall that a map f : C, — X is of order
g € G provided f(0,%y,...,t,) = zo and f(1,%2,...,%n) = g(zo). Denote by
[f; g] the homotopy class of the map f of order g. Then the operation via

[f1; 91] * [f23 92] := [f1 + 91f2; 192]-

gives the set o,(X,zo,G) of homotopy classes of maps of order g € G a
group structure. The following was proved by F. Rhodes in [13].
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Theorem 4.1. For any positive integer n, the sequence
1— Tﬂ(X’:CO) = Jn(Xa IUtG) il = 1

1§ exact.

This result in the case n = 1 was obtained earlier in (12].
In (18], M. Woo and Y. Yoon considered the evaluation subgroup

Gn := Gn(X, 0, G) := Im(ev. : 0,(X*,1x,G) = a.(X, 29, G)).

They asked whether G, is necessarily abelian. In [7], we showed the
following

Theorem 4.2. Let W,, denotes the n-th Gottlieb-Fox subgroup, i.e., W, =
G1n(X). Then the sequence

1= Wy — Gy — Gp— 1

is exact, where Gg is the subgroup of G consisting of elements g each of

which lies in the same component as 1x.

This result led us to construct an example of a non-abelian G, (in fact,

for the case n = 1).

In section 2, we generalized the Fox torus homotopy groups 7,. Now, we

generalize the Rhodes homotopy groups o, in a similar way.

Definition 4.3. For any space W with a basepoint wg and any G-space X
with basepoint zg, we let

ow (X, 20,G) = {[f; gllf : EW,wp — X, 20},

where [f; g] denotes the homotopy class of the map f of order g € G and SW
denotes the un-reduced suspension, i.e., W=Wwx [0,1]/ ~, where (w;,0) ~
(w9,0) and (w;,1) ~ (wg,1). Under the operation [fi; ¢1] * [f2; 92) := [f1 +
91f2; 9192), ow (X, o, G) is a group.

Generalizing Rhodes result (Theorem 4.1), we have the following
Theorem 4.4. For any space W, the sequence

1 — w(X,z9) = ow(X,20,G) > G — 1

15 exact.
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For more connections with the equivariant Gottlieb groups of [5], with

equivariant Nielsen fixed point theory, and properties of o, and of ow, we
refer the reader to [7].
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