Roller Coasters: Theory, Design, and Properties
Short Term 2005
Rolling Ball Coasters: In-Class Problems

Cross Product

1. Compute $\langle 0,-2,-3\rangle \times\langle 4,0,2\rangle$.
2. Compute $\langle 4,0,2\rangle \times\langle 0,-2,-3\rangle$.
3. Notice the relationship between your answers in numbers (1) and (2). Does this relationship occur in general? To answer this, find expressions for $\vec{a} \times \vec{b}$ and $\vec{b} \times \vec{a}$. How are these two expressions related?
4. In this problem we will look for a geometrical picture for the cross product.
a) Find $\langle 8,0,0\rangle \times\langle 3,2,0\rangle$.
b) Compute $|\langle 8,0,0\rangle \times\langle 3,2,0\rangle|$.
c) Draw these vectors. If we look at them as two sides of a parallelogram, draw in the other edges.
d) Find the area of the parallelogram in part c.

Torque

5. What is the magnitude of the torque caused by a 4 N force applied perpendicularly at a distance 3 meters from the axis of rotation?
6. A 12 N force is applied at an angle $\pi / 6,2$ meters from the axis of rotation. At what distance d does a 2 Newton (perpendicular) force cause a torque with the same magnitude?
7. A sphere with radius R is rolling down a track, such that the center of mass is b meters above the rails. If the translation kinetic energy is 10 Joules, find the rotational kinetic energy. (Assume no slipping.) Your answer should contain only R and b as undetermined constants.
8. In the lecture, we found that the acceleration of a sphere on a two-rail track is given by the equation

$$
a_{C} M=\frac{g \sin \theta}{\frac{2 R^{2}}{5 b^{2}}+1} .
$$

a) What is the acceleration as $b \longrightarrow R$?
b) What is the acceleration as $b \longrightarrow 0$?

