Roller Coasters: Theory, Design, and Properties

Short Term 2005
Rolling Ball Coasters Homework

1. Find $\langle 1,0,0\rangle \times\langle 0,1,0\rangle$.
2. Find $\langle 2,1,-3\rangle \times\langle 1,-2,2\rangle$.
3. In this problem you will derive a more general version of the last formula we did in class.
a) Let $f(x)$ be a function. Parameterize this curve.
b) Assume that $f(0)=0$ and that the particle starts at rest. If $h=0$ at the origin, find the initial total mechanical energy.
c) Find the final potential energy as a function of the parameter introduced in part (a).
d) Now assume that the particle has a moment of inertia I, and that it rolls in such a way that $v=\omega b$. What is the total kinetic energy of the particle as a function of v^{2} ? (This equation should have only m, I, and b as undetermined constants, and $f(s)$ should also appear.)
$e)$ Setting the answer from part (b) equal to the sum of parts (c) and (d), solve for v^{2}. This term will be useful when finding the centripetal force.

Now we look at a special case. Let $f(s)=s \sin \theta$ for some fixed θ. This will give a line that is inclined at an angle θ.
f) Find v^{2} as a function of s.
g) Find κ as a function of s.
h) What is the centripetal force on this track? Does this make sense?
g) Consider the following relation, which holds when the acceleration is constant and s is the real change in distance along the track (which is the case in this particular example):

$$
a=\frac{v^{2}}{2 s} .
$$

Using this formula and your answer from part (f), find the acceleration.
$i)$ In the case of a rolling sphere, we know the moment of inertia I. Plugging this in, compare your answer to the result from class.

