Roller Coasters: Theory, Design, and Properties

Short Term 2005
Intermediate Math: In-Class Problems

Parametric Equations

1. Consider the following parameterization of the unit circle.

$$
\langle\cos s, \sin s\rangle
$$

Find the unit tangent vector as a function of s.
2. Find the parameterization for an ellipse with one semi-axis of length 2 and the other semi-axis of length 3 .
3. Take the previous parameterization for an ellipse, and turn it into a elliptical spiral around the z-axis.
4. Find a parameterization for the negative sine curve.
5. Find a different parameterization for the negative sine curve.
6. Consider some function of the form $y=f(x)$. Write this as a parameterization.
7. Consider the following curve:

$$
\left\langle\sin s+\frac{s}{3}, 1-\cos s\right\rangle
$$

a) Plot this curve using Mathematica, letting s vary from 0 to π. Call this curve loop.
b) Find a tangent vector as a function of s.
c) Turn the vector you found in part (b) into a unit vector. Define it as $\hat{d}(s)$.
d) Find the force of gravity in the tangent direction, and use it to define a function $\operatorname{grav}(s)$. (This should give a scalar function of s)
e) Set the value of g to 9.81 and the mass m to .05 kg . Plot $\operatorname{grav}(s)$ from $s=0$ to $s=\pi$. Does the shape of this match your intuition? Where does it change sign? Does that makes sense?
f) Plot a vector $\operatorname{grav}(s) \hat{d}$ where the tail is at the position $\left\langle\sin s+\frac{s}{3}, 1-\right.$ $\cos s\rangle$ for $s=\left\{0, \frac{\pi}{8}, \frac{2 \pi}{8}, \frac{3 \pi}{8}, \frac{4 \pi}{8}, \ldots, \frac{15 \pi}{8}, 2 \pi\right\}$. Display this set of vectors on top of the graphic "loop".

