Roller Coasters: Theory, Design, and Properties

 Short Term 2005Basic Physics: In-Class Problems

Notation

Determine if the following are vectors or scalars

1. \vec{r}
2. l
3. t
4. $(\langle 3,2\rangle \cdot \hat{i}) \hat{i}$

Forces

5. Let $\vec{F}_{1}=\langle 2,4\rangle$ and $\vec{F}_{2}=\langle 4,-5\rangle$.
a) Find $\vec{F}_{\text {total }}$.
b) Find $F_{\text {total }}$.
c) Assume this force is in Newtons, and that it acts on a mass of 2 kg . Find the acceleration vector.
d) What is the magnitude of the acceleration in the direction $\langle 1,2\rangle$?
6. We found the magnitude of the force of gravity in the normal direction of a negative sine curve to be

$$
\frac{m g}{\sqrt{1+\cos ^{2} s}}
$$

For what values of s is this force maximal? When is it minimal? Sketch $-\sin s$ to see if this make sense. Remember, we are looking at the normal (perpendicular) direction.

Energy

7. Consider two objects, a 2 kg box and a 2 kg sphere.
a) What is the translational kinetic energy of the box if it is moving along a frictionless surface at $5 \mathrm{~m} / \mathrm{s}$?
b) What is the translational kinetic energy of the sphere if it is rolling along a rough surface at $5 \mathrm{~m} / \mathrm{s}$?
c) What is the rotational kinetic energy of the sphere? (It is rolling on a rough surface. $I=\frac{2}{5} m r^{2}$, and $\omega=v / r$.)
d) Now consider the box and the ball traveling up a frictionless ramp. Which will climb higher?
$e)$ Now consider the box and the ball traveling up a rough ramp. Which will climb higher?
f) Now consider the box traveling up a frictionless surface, and the ball travelling up a rough ramp. Which will climb higher?
8. Imagine a point mass rests at the top of a parabola. If given a little push (that is, suppose it starts moving, but set initial speed to 0) how fast is it moving when it reaches the point $\{2,-4\}$? (Assume distance is in meters, and $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$.)
9. We measure a point mass (with mass 10 kg) at the point $(1,-1)$ traveling with a speed of $5 \mathrm{~m} / \mathrm{s}$ to the left ("northwest") climbing up our usual parabola.
a) What is the kinetic energy of the particle at the point $(1,-1)$?
b) Define $h=0$ when $y=0$. What is the potential energy of the particle? $\left(g=9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$
c) What is the total mechanical energy of the particle?
d) Will the particle make it over the hill? (Hint: Assume it is at the top, and find its speed)
$e)$ We can describe the points on a parabola by the following position vector:

$$
\left\langle s,-s^{2}\right\rangle
$$

Once again, s will vary with position on the parabola. What is the potential energy of the particle in terms of this s ?
f) Assuming an ideal track with no energy lost to friction, use the workenergy equation to determine the speed of the particle as a function of s.
$g)$ If the speed at the point $(1,-1)$ was $4 \mathrm{~m} / \mathrm{s}$, how would this change the situation?

