Old Math 206 Quizzes

Click on the date of each quiz in order to view it. If a solution set is available, you may click on it at the far right.

Text sections denoted (H-H) refer to the sixth edition of Calculus by Hughes-Hallett, McCallum, et al.

Text sections denoted (Barr) refer to the second edition of Vector Calculus by Barr.

You may need Adobe Reader to view some of the files. You can get a free copy here.

Term
Date
Instructor
Topic(s)
Text Sections
Solutions
W14
Nelson
functions of two variables, graphs and surfaces (H-H) 12.1, 12.2
W14
Nelson
contour diagrams, linear functions, functions of three variables (H-H) 12.3, 12.4, 12.5
W14
Nelson
limits, displacement vectors, vectors (H-H) 12.6, 13.1, 13.2
W14
Nelson
partial derivatives, local linearity, second-order partial derivatives (H-H) 14.1, 14.2, 14.3, 14.7
W14
Nelson
gradients, directional derivatives (H-H) 14.4, 14.5
W14
Nelson
Lagrange multipliers (H-H) 15.3
F13
Nelson
functions of two variables, graphs and surfaces (H-H) 12.1, 12.2
F13
Nelson
contour diagrams, linear functions, functions of three variables (H-H) 12.3, 12.4, 12.5
F13
Nelson
partial derivatives, local linearity (H-H) 14.1, 14.2, 14.3
F13
Nelson
gradients, directional derivatives (H-H) 14.4, 14.5
F13
Nelson
critical points, optimization (H-H) 15.1, 15.2, 15.3
F13
Nelson
definite integral as a function of two variables, iterated integrals (H-H) 16.1, 16.2
F12
Weiss
quadric surfaces (Barr) 1.3
no
F12
Weiss
differentiation, chain rule (Barr) 3.5, 3.6
no
F12
Weiss
parths, arclength, line integrals (Barr) 5.1, 5.2
no
F12
Weiss
double integrals, triple integrals (Barr) 5.3, 5.4
no
W12
Nelson
rectangular coordinates, functions of two variables, quadric surfaces (Barr) 1.1, 1.2, 1.3
W12
Nelson
derivatives and motion, graphs, level sets, limits, arclength (Barr) 1.10, 3.1, 3.2, 5.1
W12
Nelson
divergence, curl, local extrema, double integrals (Barr) 4.2, 4.4, 5.3
F11
Nelson
functions of two variables, quadric surfaces (Barr) 1.1, 1.2, 1.3
F11
Nelson
vectors, dot products, projections (Barr) 1.5, 1.6
F11
Nelson
limits, partial derivatives (Barr) 3.2, 3.4
F11
Nelson
total derivative, chain rule (Barr) 3.5, 3.6
F11
Nelson
local extrema, paths, arclength, line integrals (Barr) 4.4, 5.1, 5.2
W11
Ross
(Quiz 1) quadric surfaces, dot products, projection (Barr) 1.3, 1.6
W11
Ross
(Quiz 2) lines in R^3, path parametrization (Barr) 1.8, 1.9, 1.10
W11
Ross
(Quiz 3) derivatives of vector-valued functions, product rules, level curves, limits
(Barr) 1.10, 3.1, 3.2
W11
Ross
(Quiz 4) partial derivatives, Jacobian, total derivative, linear approximation (Barr) 3.4, 3.5
W11
Ross
(Quiz 5) chain rule, gradient, directional derivative (Barr) 3.6, 4.1
W11
Ross
(Quiz 6) gradient, directional derivatives and tangent planes, div and grad, plotting vector fields (Barr) 4.1, 4.2
W11
Ross
(Quiz 7) path parametrization and arclength (Barr) 5.1
F10
Ross
(Quiz 1) equations of spheres, plotting functions f(x,y)=z (Barr) 1.1, 1.2, 1.3
F10
Ross
(Quiz 2) dot and cross products (Barr) 1.5, 1.6, 1.7
F10
Ross
(Quiz 3) planes and lines in R^3; parametrization of paths (Barr) 1.8, 1.9
F10
Ross
(Quiz 4) vector fields, level sets, limit definition (Barr) 3.1 3.2
F10
Ross
(Quiz 5) numerical estimation of partial derivatives, chain rule (Barr) 3.4, 3.5, 3.6
F10
Ross
(Quiz 6) paths, arclength, line integrals, work done by a vector field (Barr) 5.1, 5.2
F10
Ross
(Quiz 7) parameterized surfaces, surface integrals (Barr) 5.5, 5.6
W10
Haines
vectors, dot product, projection (Barr) 1.5, 1.6
no
W10
Haines
cross product, planes, lines (Barr) 1.7, 1.8
no
W10
Haines
vectors and lines in higher dimensions (Barr) 2.1
no
W10
Haines
quadratic forms (Barr) 2.5
no
W10
Haines
level curves (Barr) 3.1
no
W10
Haines
limits (Barr) 3.2
no
W10
Haines
open sets, closed sets, bounded sets (Barr) 3.3
no
W10
Haines
the total derivative (Barr) 3.5
no
W10
Haines
the chain rule (Barr) 3.6
no
W10
Haines
directional derivatives (Barr) 4.1
no
W10
Haines
divergence and curl (Barr) 4.2
no
W10
Haines
Taylor polynomials (Barr) 4.3
no
W10
Haines
local extrema (Barr) 4.4
no
W10
Haines
paths and arclength (Barr) 5.1
no
W10
Haines
line integrals (Barr) 5.2
no
W10
Haines
double integrals (Barr) 5.3
no
W10
Haines
surface area (Barr) 5.5
no
W10
Haines
surface integrals (Barr) 5.6
no
W10
Haines
change of variables in double integrals (Barr) 5.7
no
W10
Haines
change of variables in triple integrals (Barr) 5.8
no
W10
Haines
change of variables in triple integrals (Barr) 5.8
no
W10
Haines
path integrals (Barr) 6.1
no
W10
Haines
path integrals (Barr) 6.1
no
W10
Haines
Green's Theorem (Barr) 6.2
no
W10
Haines
the Divergence Theorem (Barr) 6.3
no
W09
Haines
vectors, dot product, projection (Barr) 1.5, 1.6
no
W09
Haines
cross product, planes, lines (Barr) 1.7, 1.8
no
W09
Haines
vectors and lines in higher dimensions (Barr) 2.1
no
W09
Haines
quadratic forms (Barr) 2.5
no
W09
Haines
functions from R^2 to R^3, graphs (Barr) 3.1
no
W09
Haines
the total derivative, the chain rule (Barr) 3.5, 3.6
no
W09
Haines
gradient, directional derivative (Barr) 4.1
no
W09
Haines
gradient, Hessian matrix, Taylor polynomials (Barr) 4.3
no
W09
Haines
arclength (Barr) 5.1
no
W09
Haines
line integrals (Barr) 5.2
no
W09
Haines
parametrized surfaces, surface area, surface integrals (Barr) 5.5, 5.6
no
W09
Haines
change of variables in double integrals (Barr) 5.7
no
W09
Haines
change of variables in triple integrals (Barr) 5.8
no
W09
Haines
path integrals (Barr) 6.1
no
W09
Haines
Green's Theorem (Barr) 6.2
no
W09
Haines
the Divergence Theorem (Barr) 6.3
no
F08
Moras
graphs, coordinates systems, vectors, planes, lines (Barr) 1.1-1.10
no
F08
Moras
vectors, matrices, linear transformations (Barr) 2.1-2.5
no
F08
Moras
open sets, continuity (Barr) 3.1-3.3
no
F08
Moras
differentiability, continuity (Barr) 3.5
no
F08
Moras
gradient, directional derivative (Barr) 4.1
no
F08
Moras
arclength (Barr) 5.1
no
F08
Moras
surface area, surface integrals (Barr) 5.5, 5.6
no
F08
Moras
path integrals (Barr) 6.1
no
F08
Moras
Green's Theorem (Barr) 6.2
no
W08
Haines
functions of two variables, quadric surfaces (Barr) 1.2, 1.3
no
W08
Haines
parametrizing lines, equations of planes (Barr) 1.7, 1.8
no
W08
Haines
matrices, vectors, projections (Barr) 1.6, 2.1, 2.2
no
W08
Haines
quadratic forms (Barr) 2.5
no
W08
Haines
graphs of functions of two variables (Barr) 3.1
no
W08
Haines
partial derivatives (Barr) 3.4
no
W08
Haines
the total derivative, the chain rule (Barr) 3.5, 3.6
no
W08
Haines
directional derivative, divergence, curl (Barr) 4.1, 4.2
no
W08
Haines
gradient, Hessian matrix, Taylor polynomials (Barr) 4.3
no
W08
Haines
paths, arclength (Barr) 5.1
no
W08
Haines
line integrals (Barr) 5.2
no
W08
Haines
triple integrals (Barr) 5.4
no
W08
Haines
parametrized surfaces, surface area, surface integrals (Barr) 5.5, 5.6
no
W08
Haines
change of variables in triple integrals (Barr) 5.8
no
W08
Haines
change of variables in triple integrals (Barr) 5.8
no
W08
Haines
path integrals (Barr) 6.1
no
W08
Haines
Green's Theorem (Barr) 6.2
no
W08
Haines
the Divergence Theorem (Barr) 6.3
no
W06
Haines
functions of two variables, quadric surfaces (Barr) 1.2, 1.3
no
W06
Haines
vectors, dot products, projections (Barr) 1.5, 1.6
no
W06
Haines
parametrizing lines, equations of planes (Barr) 1.7, 1.8
no
W06
Haines
matrices (Barr) 2.2
no
W06
Haines
linear transformations and their geometry (Barr) 2.3, 2.4
no
W06
Haines
graphs of functions of two variables (Barr) 3.1
no
W06
Haines
limits of functions of two variables (Barr) 3.2
no
W06
Haines
sets: open, closed, bounded, unbounded (Barr) 3.3
no
W06
Haines
the Jacobian and the total derivative (Barr) 3.5
no
W06
Haines
the chain rule (Barr) 3.6
no
W06
Haines
gradient and directional derivative (Barr) 4.1
no
W06
Haines
divergence and curl (Barr) 4.2
no
W06
Haines
Hessian matrix, Hessian form, Taylor polynomials (Barr) 4.3
no
W06
Haines
local extrema (Barr) 4.4
no
W06
Haines
paths, arclength (Barr) 5.1
no
W06
Haines
line integrals (Barr) 5.2
no
W06
Haines
double integrals (Barr) 5.3
no
W06
Haines
parametrized surfaces, surface area (Barr) 5.5
no
W06
Haines
change of variables in double integrals (Barr) 5.7
no
W06
Haines
change of variables in triple integrals (Barr) 5.8
no
W06
Haines
path integrals (Barr) 6.1
no
W06
Haines
path integrals (Barr) 6.1
no
W06
Haines
Green's Theorem (Barr) 6.2
no
W06
Haines
the Divergence Theorem (Barr) 6.3
no
F05
Haines
rectangular coordinates, distance (Barr) 1.1, 1.2
no
F05
Haines
quadric surfaces (Barr) 1.3
no
F05
Haines
vectors, dot products, projections (Barr) 1.5, 1.6
no
F05
Haines
parametrizing lines, equations of planes (Barr) 1.7, 1.8
no
F05
Haines
vector-valued functions (Barr) 1.9
no
F05
Haines
derivatives of vector-valued functions (Barr) 1.10
no
F05
Haines
matrices (Barr) 2.2
no
F05
Haines
linear transformations and their geometry (Barr) 2.3, 2.4
no
F05
Haines
quadratic forms (Barr) 2.5
no
F05
Haines
graphs of functions of two variables (Barr) 3.1
no
F05
Haines
limits of functions of two variables (Barr) 3.2
no
F05
Haines
open sets and graphs (Barr) 3.3
no
F05
Haines
partial derivatives (Barr) 3.4
no
F05
Haines
the Jacobian and the total derivative (Barr) 3.5
no
F05
Haines
the chain rule (Barr) 3.6
no
F05
Haines
gradient and directional derivative (Barr) 4.1
no
F05
Haines
divergence and curl (Barr) 4.2
no
F05
Haines
Hessian matrix, Hessian form, Taylor polynomials (Barr) 4.3
no
F05
Haines
local extrema (Barr) 4.4
no
F05
Haines
local extrema (Barr) 4.4
no
F05
Haines
paths, arclength (Barr) 5.1
no
F05
Haines
paths, arclength (Barr) 5.1
no
F05
Haines
line integrals (Barr) 5.2
no
F05
Haines
line integrals (Barr) 5.2
no
F05
Haines
double integrals (Barr) 5.3
no
F05
Haines
double integrals (Barr) 5.3
no
F05
Haines
triple integrals (Barr) 5.4
no
F05
Haines
parametrized surfaces, surface area (Barr) 5.5
no
F05
Haines
surface integrals (Barr) 5.6
no
F05
Haines
surface integrals (Barr) 5.6
no
F05
Haines
change of variables in double integrals (Barr) 5.7
no
F05
Haines
change of variables in double integrals (Barr) 5.7
no
F05
Haines
change of variables in triple integrals (Barr) 5.8
no
F05
Haines
path integrals (Barr) 6.1
no
F05
Haines
path integrals (Barr) 6.1
no
F05
Haines
Green's Theorem (Barr) 6.2
no
F05
Haines
the Divergence Theorem (Barr) 6.3
no
F05
Haines
the Divergence Theorem (Barr) 6.3
no
W05
Haines
rectangular coordinates, midpoints of line segments (Barr) 1.1
no
W05
Haines
graphs of functions of two variables, quadric surfaces (Barr) 1.2, 1.3
no
W05
Haines
vectors, dot products (Barr) 1.5, 1.6
no
W05
Haines
parametrizing lines, equations of planes (Barr) 1.7, 1.8
no
W05
Haines
parametrizing lines, equations of planes (Barr) 1.8
no
W05
Haines
derivatives and integrals of vector-valued functions (Barr) 1.9
no
W05
Haines
matrices (Barr) 2.2
no
W05
Haines
linear transformations and their geometry (Barr) 2.3, 2.4
no
W05
Haines
graphs of functions of two variables (Barr) 3.1
no
W05
Haines
limits of functions of two variables (Barr) 3.2
no
W05
Haines
partial derivatives (Barr) 3.4
no
W05
Haines
the Jacobian and the total derivative (Barr) 3.5
no
W05
Haines
the chain rule (Barr) 3.6
no
W05
Haines
the gradient and the directional derivative (Barr) 4.1
no
W05
Haines
divergence and curl (Barr) 4.2
no
W05
Haines
Hessian matrix, Hessian form, Taylor polynomials (Barr) 4.3
no
W05
Haines
paths, arclength (Barr) 5.1
no
W05
Haines
paths, arclength (Barr) 5.1
no
W05
Haines
line integrals (Barr) 5.2
no
W05
Haines
line integrals (Barr) 5.2
no
W05
Haines
double integrals (Barr) 5.3
no
W05
Haines
triple integrals (Barr) 5.4
no
W05
Haines
triple integrals (Barr) 5.4
no
W05
Haines
parametrized surfaces, surface area (Barr) 5.5
no
W05
Haines
parametrized surfaces, surface area (Barr) 5.5
no
W05
Haines
surface integrals (Barr) 5.6
no
W05
Haines
surface integrals (Barr) 5.6
no
W05
Haines
change of variables in double integrals (Barr) 5.7
no
W05
Haines
path integrals (Barr) 6.1
no
W05
Haines
path integrals (Barr) 6.1
no
W05
Haines
Green's Theorem (Barr) 6.2
no
W05
Haines
the Divergence Theorem (Barr) 6.3
no
W04
Haines
rectangular coordinates, midpoints of line segments (Barr) 1.1
no
W04
Haines
graphs of functions of two variables, quadric surfaces (Barr) 1.2. 1.3
no
W04
Haines
unit vectors (Barr) 1.5
no
W04
Haines
cross products (Barr) 1.7
no
W04
Haines
parametrizing lines, equations of planes (Barr) 1.8
no
W04
Haines
derivatives and integrals of vector-valued functions (Barr) 1.9, 1.10
no
W04
Haines
matrices (Barr) 2.2
no
W04
Haines
linear transformations and their geometry (Barr) 2.3, 2.4
no
W04
Haines
graphs of functions of two variables (Barr) 3.1
no
W04
Haines
limits of functions of two variables (Barr) 3.2
no
W04
Haines
partial derivatives (Barr) 3.4
no
W04
Haines
computing the Jacobian matrix and the total derivative (Barr) 3.5
no
W04
Haines
the chain rule (Barr) 3.6
no
W04
Haines
the gradient and the directional derivative (Barr) 4.1
no
W04
Haines
divergence and curl (Barr) 4.2
no
W04
Haines
Hessian matrix, Hessian form, Taylor polynomials (Barr) 4.3
no
W04
Haines
paths, arclength (Barr) 5.1
no
W04
Haines
line integrals (Barr) 5.2
no
W04
Haines
double integrals (Barr) 5.3
no
W04
Haines
triple integrals (Barr) 5.4
no
W04
Haines
surface area (Barr) 5.5
no
W04
Haines
surface integrals (Barr) 5.6
no
W04
Haines
the fundamental theorem for path integrals (Barr) 6.1
no
F03
Haines
rectangular coordinates, midpoints of line segments (Barr) 1.1
no
F03
Haines
graphs of functions of two variables, quadric surfaces (Barr) 1.2. 1.3
no
F03
Haines
unit vectors (Barr) 1.5
no
F03
Haines
dot product, projections and components of vectors (Barr) 1.6
no
F03
Haines
cross products (Barr) 1.7
no
F03
Haines
parametrizing lines, equations of planes (Barr) 1.8
no
F03
Haines
vector-valued functions (Barr) 1.9
no
F03
Haines
derivatives and integrals of vector-valued functions (Barr) 1.10
no
F03
Haines
matrices (Barr) 2.2
no
F03
Haines
linear transformations and their geometry (Barr) 2.3, 2.4
no
F03
Haines
linear transformations and their geometry (Barr) 2.3, 2.4
no
F03
Haines
graphs of functions in two dimensions (Barr) 3.1
no
F03
Haines
limits of functions of two variables (Barr) 3.2
no
F03
Haines
maxima and minima of functions of two variables (Barr) 3.3
no
F03
Haines
partial derivatives (Barr) 3.4
no
F03
Haines
computing the Jacobian matrix (Barr) 3.5
no
F03
Haines
computing the Jacobian matrix and the total derivative (Barr) 3.5
no
F03
Haines
the chain rule (Barr) 3.6
no
F03
Haines
the gradient and the directional derivative (Barr) 4.1
no
F03
Haines
divergence and curl (Barr) 4.2
no
F03
Haines
Hessian matrix, Hessian form, Taylor polynomials (Barr) 4.3
no
F03
Haines
finding critical points (Barr) 4.4
no
F03
Haines
paths, arclength (Barr) 5.1
no
F03
Haines
line integrals (Barr) 5.2
no
F03
Haines
line integrals (Barr) 5.2
no
F03
Haines
double integrals (Barr) 5.3
no
F03
Haines
triple integrals (Barr) 5.4
no
F03
Haines
triple integrals (Barr) 5.4
no
F03
Haines
surface area (Barr) 5.5
no
F03
Haines
surface integrals (Barr) 5.6
no
F03
Haines
the fundamental theorem for path integrals (Barr) 6.1
no
F03
Haines
Green's Theorem (Barr) 6.2
no
F03
Haines
the Divergence Theorem (Barr) 6.3
no
F03
Haines
the Divergence Theorem (Barr) 6.3
no
F03
Haines
Stokes's Theorem (Barr) 6.4
no