1. Compute the radius and interval (including endpoints) of convergence for \(\sum_{n=1}^{\infty} \frac{(x+3)^n}{(5^n)(2n)} \).

\[
\lim_{n \to \infty} \left| \frac{\frac{(x+3)^{n+1}}{S^{n+1}(2n+2)}}{\frac{(x+3)^n}{S^n(2n)}} \right| = \lim_{n \to \infty} \left| \frac{(x+3)}{2n+2} \cdot \frac{2n}{S^n(2n)} \right| = \left| \frac{x+3}{5} \right|
\]

So, \(\left| \frac{x+3}{5} \right| < 1 \Rightarrow -1 < \frac{x+3}{5} < 1 \Rightarrow -5 < x+3 < 5 \Rightarrow -8 < x < 2 \).

Check endpoints:
- \(x = 2 \) gives \(\sum_{n=1}^{\infty} \frac{(2+3)^n}{5^n(2n)} = \sum_{n=1}^{\infty} \frac{1}{2n} \) (which diverges).
- \(x = -8 \) gives \(\sum_{n=1}^{\infty} \frac{(-8+3)^n}{5^n(2n)} = \sum_{n=1}^{\infty} \frac{(-1)^n}{2n} \), which passes the AST.

So, the interval is \([-8, 2]\) and radius is \(5\) (half the width of the interval).

2. Use a second-degree Taylor polynomial to estimate \(\sqrt{101} \).

\[
\begin{align*}
f(x) &= x^{1/2} \\
f'(x) &= \frac{1}{2}x^{-1/2} \\
f''(x) &= -\frac{1}{4}x^{-3/2} \\
f'''(x) &= \frac{3}{8}x^{-5/2} \\
f''''(x) &= -\frac{15}{16}x^{-7/2}
\end{align*}
\]

Choose \(a = 100 \) because we know \(\sqrt{100} = 10 \).

\[
\begin{align*}
\frac{f(100)}{2!} &= \frac{1}{20} \\
\frac{f''(100)}{4!} &= \frac{1}{6000} \\
P_2(x) &= f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 \\
&= 10 + \frac{1}{20}(x-100) + \frac{1}{6000}(x-100)^2 \\
P_2(101) &= 10 + \frac{1}{20} - \frac{1}{6000} \\
&= \frac{80399}{8000}
\end{align*}
\]

3. Find the complete Taylor series (in summation notation) for \(f(x) = \ln(1-x) \) about \(x = 0 \).

\[
\begin{align*}
f(x) &= \ln(1-x) \\
f'(x) &= -\frac{1}{1-x} \\
f''(x) &= -\frac{1}{(1-x)^2} \\
f'''(x) &= -\frac{2}{(1-x)^3} \\
f''''(x) &= -\frac{6}{(1-x)^4}
\end{align*}
\]

\[
\begin{align*}
f(0) &= 0 \\
f'(0) &= -1 \\
f''(0) &= -1 \\
f'''(0) &= -2 \\
f''''(0) &= -6
\end{align*}
\]

Series = \((-1)^n x + \frac{-1}{2!} x^2 + \frac{-2}{3!} x^3 + \frac{-6}{4!} x^4 + \cdots \)

\[
= -x - \frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{4} - \cdots
\]

4. Evaluate the following exactly.

(a) \(1 - 1 + 1/2 - 1/6 + 1/24 - 1/120 + \cdots \) = \(e^x \) series with \(x = -1 \) = \(e^{-1} \)

(b) \(8/3 - 8/9 + 8/27 - 8/81 + \cdots \) = geometric: \(a = 8/3 \), \(r = -1/3 \) = \(\frac{a}{1-r} = \frac{8/3}{1-(-1/3)} \)

(c) \(\pi - \pi^3/6 + \pi^5/120 - \cdots \) = (sine series with \(x = \pi \)) = \(-\sin \pi = 0 \)
5. Let \(f(x) = x^3 \sin(-5x^2) \).

(a) Write out the first 3 non-zero terms in the Taylor series about \(x = 0 \) for \(f(x) \).

\[
f(x) = x^3 \left(\sin \omega \text{ with } \omega = -5x^2 \right)
\]
\[
= x^3 \left(-5x^2 - \frac{(-5x^2)^3}{3!} + \frac{(-5x^2)^5}{5!} - \ldots \right)
\]
\[
= x^3 \left(-5x^2 + \frac{125x^6}{6} - \frac{3125x^{10}}{120} + \ldots \right)
\]
\[
= -5x^5 + \frac{125x^9}{6} - \frac{3125x^{13}}{120} + \ldots
\]

(b) Write out the complete series for \(f(x) \) in summation notation.

\[
f(x) = \sum_{n=1}^{\infty} \frac{4n+1}{x} \cdot \frac{5^{2n-1}}{(2n-1)!} (-1)^n
\]

Or

\[
\sum_{n=0}^{\infty} \frac{4n+5}{x} \cdot \frac{5^{2n+1}}{(2n+1)!} (-1)^{n+1}
\]

or various other answers.

(c) Compute \(f^{(13)}(0) \).

After 13 derivatives, the first 2 terms have become 0, and all terms beyond the third term still contain \(x^4, x^8, x^{12} \), so they all become 0 when we plug in \(x = 0 \). Thus, only the third term remains, and after 13 derivatives, it will be \(-\frac{3125}{120}\).

(d) Compute \(\lim_{x \to 0} \frac{5x^5 + f(x)}{5x^9} \).

\[
= \lim_{x \to 0} \frac{5x^5 - 5x^5 + \frac{125x^9}{6} - \frac{3125x^{13}}{120}}{5x^9}
\]

\[
= \lim_{x \to 0} \left(\frac{25}{6} - \frac{625x^4}{120} \right)
\]

\[
= \frac{25}{6}
\]

6. Use the appropriate second-degree Taylor polynomials to estimate a solution near \(x = 0 \) to \(1 + \sin 8x = e^{10x} \). Since \(\sin 8x \approx 8x \) and \(e^{10x} \approx 1 + 10x + \frac{(10x)^2}{2} = 1 + 10x + 50x^2 \),

\[
8x = \sqrt{1 + 10x + 50x^2}
\]

\[
0 = 2x + 50x^2
\]

\[
0 = 2x(1 + 25x) \implies x = 0, x = -\frac{1}{25}
\]
7. Find the general solution of the differential equation \(\frac{dy}{dx} (1 + x^3) = x^2 e^{7y} \).

\[
\int e^{-7y} dy = \int \frac{1}{w} dw = \frac{1}{3} \ln |w| + C \\
\int \frac{e^{-7y}}{1 + x^3} dx = \int \frac{3}{w} dw = x^2 + D \\
-7y = \ln \left(\frac{-7}{3} \ln (1 + x^3) + D \right)
\]

How could you check that your solution is correct? Plug \(y \) and its derivative into the original D.E. and make sure both sides of the D.E. are equal.

8. Sketch the slope field for \(\frac{dy}{dx} = y - 4x \).

9. Use Euler’s Method with 3 steps to estimate \(y(3/4) \) if \(\frac{dy}{dx} = y - 4x \) and \(y(0) = 2 \) and decide if your answer is too large or too small.

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y)</th>
<th>(\frac{dy}{dx})</th>
<th>(\Delta x \cdot \Delta y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>2 \cdot \frac{1}{4} = \frac{1}{2}</td>
<td>\frac{1}{4} \cdot \frac{1}{2} = \frac{1}{8}</td>
</tr>
<tr>
<td>\frac{1}{4}</td>
<td>\frac{5}{2}</td>
<td>\frac{3}{2} \cdot \frac{1}{4} = \frac{3}{8}</td>
<td>\frac{3}{8} \cdot \frac{1}{4} = \frac{3}{32}</td>
</tr>
<tr>
<td>\frac{1}{2}</td>
<td>\frac{23}{8}</td>
<td>\frac{7}{8} \cdot \frac{1}{4} = \frac{7}{32}</td>
<td>\frac{7}{32} \cdot \frac{1}{4} = \frac{7}{128}</td>
</tr>
<tr>
<td>\frac{3}{4}</td>
<td>\frac{99}{32}</td>
<td>\frac{11}{4} \cdot \frac{1}{4} = \frac{11}{16}</td>
<td>\frac{11}{16} \cdot \frac{1}{4} = \frac{11}{64}</td>
</tr>
</tbody>
</table>

So, \(y \left(\frac{3}{4} \right) \approx \frac{99}{32} \).

Since curve is concave down (see #8), this is too large.
10. A colony of endangered sea otters has an annual birth rate of 10% and an annual death rate of 15%. In an attempt to sustain the colony, activists bring in otters from another region where the animals are plentiful. They do this at a rate of 50 otters per year.

(a) Write a DE whose solution is \(P(t) \), the otter population \(t \) years from now.

\[
\frac{dP}{dt} = .1P - .15P + 50 = -.05P + 50 \rightarrow \frac{dP}{dt} = -.05P + 50
\]

(b) Find any and all equilibrium solutions.

\[0 = -.05(P - 1000) \Rightarrow P = 1000 \]

birth rate = .1(100/yr)

death rate = -.15(20/yr)

imp. rate = +50/yr

(c) Find the general solution of your DE.

\[
\int \frac{dP}{P - 1000} = \int -.05 \, dt
\]

\[
\ln|P - 1000| = -.05t + C
\]

\[
|P - 1000| = e^{-.05t} e^C
\]

\[
P - 1000 = \pm e^C e^{-.05t}
\]

\[400 = 1000 + Ae^0 \]

\[-600 = A \Rightarrow P = 1000 - 600e^{-0.05t} \]

(d) Find and sketch the particular solution if the current population is 400 otters.

![Graph showing stable equilibrium]

11. A population obeys the differential equation \(\frac{dP}{dt} = .001P(3000 - P) \). Sketch solutions for \(P(t) \) for the following initial populations: \(P(0) = 0 \), \(P(0) = 100 \), \(P(0) = 2000 \), \(P(0) = 4000 \).