1. Consider the function \(f(x) = \frac{3}{5 - 2x} \).

(a) Is this function continuous on the domain \((-\infty, \infty)\)? Explain.

(b) Compute the average rate of change of \(f \) on \([1.5, 2]\).

(c) Using the limit definition of the derivative, compute \(f'(x) \).

(d) Find the equation of the tangent line to \(f \) at \(x = 2 \).

2. Given that \(f(0) = 2 \), \(g(0) = 3 \), \(f'(0) = 5 \), \(g'(0) = 7 \), and \(f'(3) = \pi \) compute the following.

(a) \(h'(0) \) if \(h(x) = f(x)g(x) \)

(b) \(j'(0) \) if \(j(x) = \frac{f(x)}{g(x)} \)

(c) \(k'(0) \) if \(k(x) = f(g(x)) \)

3. Sketch a graph of a function which is always positive and decreasing and which satisfies the following:

\[
\lim_{x \to -\infty} f(x) = \infty; \quad \lim_{x \to \infty} f(x) = 2; \quad \lim_{x \to 1^-} f(x) = 5; \quad \lim_{x \to 1^+} f(x) = 4
\]
4. Compute \(dy/dx \) for each of the following.

(a) \(y = x^{2004} + 2004^x + e^{2004} + \frac{x}{2004} + \ln(2004x) + \arctan(2004x) + \ln(2004) \)

(b) \(y = \sqrt{x} \cos(7x^3) \)

(c) \(y = \frac{e^x + \pi}{\sin 4 - 7x} \)

(d) \(y = \tan(e^{x^2 \arcsin(5x)}) \)

(e) \(y^3 + yx^2 + x^2 = 3y^2 \)

5. Evaluate the following limits.

(a) \(\lim_{x \to \infty} \frac{x^2}{\ln x} \)

(b) \(\lim_{x \to 0} \frac{\sin(12x) - 12x}{x^3} \)

(c) \(\lim_{x \to 0} \frac{e^x - 1}{\cos x} \)

(d) \(\lim_{x \to 5} \frac{35 - 7x}{2x - 10} \)

(e) \(\lim_{x \to 0} \frac{1}{x} \)

(f) \(\lim_{x \to 0} \frac{1}{x} \)
6. Use local linearization to estimate the value of \(\sqrt{25} \). Is your estimate too large or too small?

7. For the graph of \(g \) shown, sketch a graph of \(g' \) and a graph of an antiderivative of \(g \) (call it \(G \)) such that \(G(0) = 2 \). As an aid, fill in the table below and make sure your graphs agree with the entries in the table.

<table>
<thead>
<tr>
<th>(f)</th>
<th>positive</th>
<th>negative</th>
<th>increasing</th>
<th>decreasing</th>
<th>concave up</th>
<th>concave down</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f')</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f'')</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
8. Suppose $f(x)$ gives your estimated score (in points out of 100) on the final exam as a function of the number of hours you study.

(a) Interpret the statement $f(12) = 80$.

(b) Interpret the statement $f'(12) = 3$.

(c) Using the information above, estimate $f(14)$ and explain its meaning.

9. The graph shown is of f', NOT f. At which labelled point is

(a) f greatest?
(b) f least?
(c) f' greatest?
(d) f' least?
(e) f'' greatest?
(f) f'' least?
(g) f increasing most rapidly?
(h) f decreasing most rapidly?
(i) f' increasing most rapidly?
(j) f' decreasing most rapidly?

On what interval(s) is

(a) f increasing?
(b) f' increasing?
(c) f concave up?

See old exams and quizzes at http://abacus.bates.edu/~etowne/mathresources.html