NAME:

Instruction: Read each question carefully. Explain ALL your work and give reasons to support your answers.
Advice: DON'T spend too much time on a single problem.

<table>
<thead>
<tr>
<th>Problems</th>
<th>Maximum Score</th>
<th>Your Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>120</td>
<td></td>
</tr>
</tbody>
</table>
1. Let $f : \mathbb{R}^2 \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}^3$ be given by

$$f(x, y) = 3x^3 + y^2 - 9x + 4y \quad \text{and} \quad g(t) = \left(\frac{t^2}{6}, e^{t/3}, 1 - t\right).$$

(8 pts) (i) Classify all critical points of f (local max/min, saddle points, etc.).

(7 pts.) (ii) Find the Jacobian matrix $J(g \circ f)(0, 1)$ of $g \circ f$ at $(0, 1)$.
2. (10 pts) (i) Use change of variables to evaluate the following double integral. [Hint: First determine the region of integration.]

\[\int_{-1}^{1} \int_{0}^{\sqrt{1-y^2}} 2xy^2 \, dx \, dy \]

(10 pts) (ii) Find the double integral \(\int \int_R x \, dA \) where \(R \) is the region bounded by the curve \(y = x^3 \) and the line \(y = x \). [Hint: There are two parts of the integral.]
3. Consider the following function \(F : \mathbb{R}^3 \to \mathbb{R} \) given by
\[
F(x, y, z) = xy + z^2.
\]

(5 pts) (i) Find the directional derivative \(D_u F(1, 1, 1) \) of \(F \) at the point \((1, 1, 1)\) in the direction of \(u = 2i - j + 2k \).

(5 pts) (ii) Find a direction (give a unit vector) in which \(F \) decreases most rapidly at the point \((1, 1, 1)\).

(5 pts) (iii) Find an equation of the plane tangent to the level surface \(F(x, y, z) = 2 \) at the point \((1, 1, 1)\).
4. (8 pts) (i) Let C be the path formed by the triangle with vertices $(0,0), (1,0)$, and $(0,1)$, oriented counterclockwise. Use Green’s theorem to evaluate the line integral
\[\int_C 2xy \, dx + (x + 1)^2 \, dy. \]

(12 pts) (ii) Let $F(x, y) = (-e^{-x} \ln y, \frac{e^{-x}}{y})$. Determine whether the vector field F is path independent. If so, find a function f so that $\nabla f = F$.
5. Consider the curve C given by the parametrization

$$\mathbf{x}(t) = (t, 1 - t, t^2) \quad 1 \leq t \leq 2.$$

(8 pts) (i) Find the work done by the force $F(x, y, z) = (xy, z, x + y)$ along the curve C.

(7 pts.) (ii) A wall W is to be built on top of the curve C where the height is given by $f(x, y, z) = x$. Find the surface area of the wall W.
6. Let $F(x, y, z) = (x^2y, 2xz, yz^3)$.

(5 pts) (i) Find the divergence $\text{div } F$ of F.

(10 pts) (ii) Use Gauss’ (or Divergence) theorem to evaluate the flux of the vector field F

$$\oiint_{\partial S} F \cdot \mathbf{n} \, d\sigma$$

where ∂S is the surface of the rectangular box S determined by

$$0 \leq x \leq 1, 0 \leq y \leq 2, 0 \leq z \leq 3.$$
7. Let \(F(x, y, z) = (z, x, y) \). Suppose \(M \) is the portion of the paraboloid \(z = x^2 + y^2 + 2 \) that lies inside the solid cylinder \(x^2 + y^2 \leq 1 \).

(i) Find \(\text{curl } F \).

(ii) Write a parametrization for the surface \(M \). Be sure to indicate the domains for the parameters.

(iii) Use Stokes' theorem to evaluate the path integral
\[
\oint_{\partial M} F \cdot dx
\]
[Hint: Use parts (i) and (ii)].