MATH206A MULTIVARIABLE CALCULUS - PROF. P. WONG

FINAL EXAM - DECEMBER 12, 2007

NAME:

Instruction: Read each question carefully. Explain ${\bf ALL}$ your work and give reasons to support your answers.

Advice: DON'T spend too much time on a single problem.

Problems	Maximum Score	Your Score
1.	15	
2.	20	
3.	15	
4.	20	
5.	15	
6.	15	
7.	20	
Total	120	

1. Let $f: \mathbb{R}^2 \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}^3$ be given by

$$f(x,y) = 3x^3 + y^2 - 9x + 4y$$
 and $g(t) = (\frac{t^2}{6}, e^{t/3}, 1 - t).$

(8 pts) (i) Classify all critical points of f (local max/min, saddle points, etc.).

(7 pts.) (ii) Find the Jacobian matrix $J(g\circ f)(0,1)$ of $g\circ f$ at (0,1).

2. (10 pts) (i) Use change of variables to evaluate the following double integral. [Hint: First determine the region of integration.]

$$\int_{-1}^{1} \int_{0}^{\sqrt{1-y^2}} 2xy^2 \, dxdy$$

(10 pts) (ii) Find the double integral $\int \int_R x \ dA$ where R is the region bounded by the curve $y=x^3$ and the line y=x. [Hint: There are two parts of the integral.]

3. Consider the following function $F: \mathbb{R}^3 \to \mathbb{R}$ given by

$$F(x, y, z) = xy + z^2.$$

(5 pts) (i) Find the directional derivative $D_{\bf u}F(1,1,1)$ of F at the point (1,1,1) in the direction of ${\bf u}=2{\bf i}-{\bf j}+2{\bf k}$.

(5 pts) (ii) Find a direction (give a unit vector) in which F decreases most rapidly at the point (1, 1, 1).

(5 pts) (iii) Find an equation of the plane tangent to the level surface F(x, y, z) = 2 at the point (1, 1, 1).

4. (8 pts) (i) Let C be the path formed by the triangle with vertices (0,0),(1,0), and (0,1), oriented counterclockwise. Use Green's theorem to evaluate the line integral

$$\oint_C 2xy \ dx + (x+1)^2 \ dy.$$

(12 pts) (ii) Let $F(x,y) = (-e^{-x} \ln y, \frac{e^{-x}}{y})$. Determine whether the vector field F is path independent. If so, find a function f so that $\nabla f = F$.

5. Consider the curve C given by the parametrization

$$\mathbf{x}(t) = (t, 1 - t, t^2)$$
 $1 \le t \le 2$.

(8 pts) (i) Find the work done by the force F(x,y,z)=(xy,z,x+y) along the curve C.

(7 pts.) (ii) A wall W is to be built on top of the curve C where the height is given by f(x, y, z) = x. Find the surface area of the wall W.

6. Let $F(x, y, z) = (x^2y, 2xz, yz^3)$.

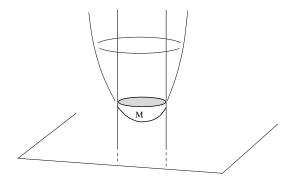
(5 pts) (i) Find the divergence div F of F.

(10 pts) (ii) Use Gauss' (or Divergence) theorem to evaluate the flux of the vector field ${\cal F}$

where ∂S is the surface of the rectangular box S determined by

$$0 \le x \le 1, 0 \le y \le 2, 0 \le z \le 3.$$

7. Let F(x,y,z)=(z,x,y). Suppose M is the portion of the paraboloid $z=x^2+y^2+2$ that lies inside the solid cylinder $x^2+y^2\leq 1$.



(5 pts.)(i) Find curl F.

(5 pts.)(ii) Write a parametrization for the surface M. Be sure to indicate the domains for the parameters.

(10 pts.) (iii) Use Stokes' theorem to evaluate the path integral $\,$

$$\oint_{\partial M} F \cdot d\mathbf{x} \quad \text{[Hint: Use parts (i) and (ii).]}.$$