(10) I. Give a parametrization of

A. the line segment that connects the points \((1, 0, 3)\) and \((4, 5, 5)\) in \(\mathbb{R}^3\).

B. the surface bounded by the triangle in \(\mathbb{R}^3\) located in the first octant and cut off by the plane whose equation is \(x + y + z = 1\).

(5) II. Compute the area of the triangle in \(\mathbb{R}^3\) which has vertices \((1, 1, 1)\), \((4, 5, 6)\), and \((3, 7, 5)\).
(25) III. Let M be the surface in \mathbb{R}^3 parametrized by $\mathbf{f}(s,t) = (s, s \cos t, s \sin t)$ for $0 \leq s \leq 2$ and $0 \leq t \leq \pi$.

A. Give a coordinate equation for M in terms of x, y, and z. Describe M in words.

B. Calculate a unit normal to M at the point $(1, 0, 1)$.

C. Give an equation of the tangent plane to M at the point $(1, 0, 1)$.
(This continues the problem from the previous page . . .)

D. Calculate the surface area of M.

E. If $\mathbf{F}(x, y, z) = xi + yj + zk$, calculate the value of the surface integral $\iint_M \mathbf{F} \cdot \mathbf{n} d\sigma$.
IV. The curve C is parametrized by $f(t) = (t^2 - 1, t^2 + 1, t^2)$ starting at $t = 0$ and ending at $t = 1$.

A. Compute the length of C.

B. Compute the line integral of $\mathbf{F}(x, y, z) = y^4 \mathbf{i} + 4xy^3 \mathbf{j} + 2z \mathbf{k}$ over C.

C. Compute the line integral of $\mathbf{F}(x, y, z) = y^4 \mathbf{i} + 4xy^3 \mathbf{j} + 2z \mathbf{k}$ over the curve that is the ellipse obtained by intersecting the cylinder $x^2 + y^2 = 1$ with the plane $3x + 5y - 2z = 0$.
(5) V. Compute \[\int_0^2 \int_0^4 \int_0^{\sqrt{4-x^2}} \sqrt{4-x^2-y^2} \, dz \, dy \, dx \]
by converting to spherical coordinates.

(5) VI. \(f(t) = (\cos t, \sin t, t) \) with \(0 \leq t \) is a parametrization of a helix in 3-space. Give the equation of the tangent line to this path at the point where \(t = \frac{\pi}{2} \).
VII. Suppose \(f(x, y, z) = (xy^2z, xz(y + l)) \) and \(a = (1, 1, 1) \)

A) Calculate the Jacobian matrix of \(f \) at \(a \).

B) Calculate the total derivative of \(f \) at \(a \).

VIII. For the quadratic form \(p(x, y) = x^2 + 3xy + y^2 \)

A. Give a symmetric matrix \(S \) that is a matrix of this quadratic form.

B. Calculate the Hessian for \(p \) at \((0, 0) \).

C. Give the second degree Taylor polynomial for \(p \) at \((0, 0) \).
(10) IX. Let $F(x, y) = (y^2, y + 2x)$. Let R be the triangular region in the first quadrant bounded by the curves $y = 0$, $x = 1$, and $y = x$. Use Green's Theorem to calculate $\int_{\partial R} F \cdot dx$.

(10) X. Use the Divergence theorem to calculate $\int_{\partial S} F \cdot n\, d\sigma$, where $F = 2xi + 3yj + 5zk$ and S is the unit cube in the first octant. ($S = [0,1] \times [0,1] \times [0,1]$).