1. Consider the function \(f(x) = \frac{3}{5 - 2x} \).

(a) Is this function continuous on the domain \((-\infty, \infty)\)? Explain.

(b) Compute the average rate of change of \(f \) on \([1.5, 2]\).

(c) Using the limit definition of the derivative, compute \(f'(x) \).

(d) Find the equation of the tangent line to \(f \) at \(x = 2 \).

2. Given that \(f(0) = 2, \ g(0) = 3, \ f'(0) = 5, \ g'(0) = 7, \) and \(f'(3) = \pi \) compute the following.

(a) \(h'(0) \) if \(h(x) = f(x)g(x) \)

(b) \(j'(0) \) if \(j(x) = \frac{f(x)}{g(x)} \)

(c) \(k'(0) \) if \(k(x) = f(g(x)) \)

3. Sketch a graph of a function which is always positive and decreasing and which satisfies the following:

\[
\lim_{x \to -\infty} f(x) = \infty; \quad \lim_{x \to \infty} f(x) = 2; \quad \lim_{x \to 1^-} f(x) = 5; \quad \lim_{x \to 1^+} f(x) = 4
\]
4. Compute dy/dx for each of the following.

(a) $y = x^2 + 2^x + e^2 + \frac{x}{2} + \frac{2}{x} + \ln(2x) + \arctan(2x) + \ln(2) + \sin 2$

(b) $y = \sqrt{x} \cos(7x^3)$

(c) $y = \frac{e^x + \pi}{\tan 4 - 7x}$

(d) $y = \tan(e^{x^2} \arcsin(5x))$

(e) $y^3 + yx^2 + x^2 = 3y^2$

5. Consider the differential equation $y' = -3y$.

(a) Sketch the slope field for this DE.

(b) Verify that $y = Ce^{-3x}$ is a solution for all values of C.

(c) Find the solution that passes through $(1, 5)$.
6. Given the graph of \(f \), sketch a graph of \(f' \) and a graph of \(F \), an antiderivative of \(f \) such that \(F(0) = -1 \).

7. The graph shown is \(f' \), NOT \(f \). Answer the questions below.

At which labeled point(s) does

(a) \(f \) have a stationary point?
(b) \(f \) have a local max?
(c) \(f \) have a local min?
(d) \(f' \) have a stationary point?
(e) \(f' \) have a local max?
(f) \(f' \) have a local min?
(g) \(f \) have a global max?
(h) \(f \) have a global min?
(i) \(f' \) have a global max?
(j) \(f' \) have a global min?
(k) \(f'' \) have a global max?
(l) \(f'' \) have a global min?

On what interval(s) is

(a) \(f \) increasing?
(b) \(f \) decreasing?
(c) \(f' \) increasing?
(d) \(f' \) decreasing
(e) \(f \) concave up?
(f) \(f \) concave down?
(g) \(f' \) concave up?
(h) \(f' \) concave down?

On the same set of axes, sketch a possible graph of \(f \).
8. Find all possible antiderivatives of the following.

(a) \(g'(t) = e^5 + t^5 + e^{5t} \)

(b) \(h'(r) = 3\sin(2r) + \frac{3}{\sqrt{r}} \)

9. Evaluate the following limits.

(a) \(\lim_{x \to \infty} \frac{x^2}{\ln x} \)

(b) \(\lim_{x \to 0} \frac{\sin(12x) - 12x}{x^3} \)

(c) \(\lim_{x \to 0} \frac{e^x - 1}{\cos x} \)

(d) \(\lim_{x \to 5} \frac{35 - 7x}{2x - 10} \)

(e) \(\lim_{x \to 0^+} x^3 \ln x \)

(f) \(\lim_{x \to 0^-} \frac{1}{x} \)

(g) \(\lim_{x \to 0} \frac{1}{x} \)