1. A "True or False" question. In this problem, assume A and B are 4×4 square matrices. Suppose:

i) $rref(A) = R$ where R has exactly three leading-1's,

ii) $rref(B) = S$ and $S = I_4$. In the left margin, next to each statement, write "T" if the statement is always true and "F" if it's not always true, for any such matrices A and B.

 a) A is an invertible matrix.

 F

 b) The determinant of B is non-zero.

 T

 c) The equation $Ax = b$ has infinitely many solutions x for each $b \in \mathbb{R}^4$.

 F

 Since the bottom row of R is all 0's, there are b's for which

 $A\hat{x} = b$ is inconsistent and so no soln for such b's. Otherwise there are ∞

 soln's!

 d) $\text{Nul}(A) = \text{Nul}(R)$.

 T

 e) $\text{rank}(A) = 3$.

 T

 f) $\text{Col}(B) = \text{Col}(S)$.

 T

 g) The number 0 is an eigenvalue for A.

 T

 h) The number 0 is an eigenvalue for B.

 F

 i) $\text{Nul}(B) = \{0\}$.

 T

 (the only soln to $B\hat{x} = 0$ is $\hat{x} = 0$; the only vector in $\text{Nul}(B)$ is the zero vector.

 BE CAREFUL: The question does not ask if $\{0\}$ is a BASIS for $\text{Nul}(B)$!

 j) A and B are not row equivalent.

 T

 k) A and B are not similar.

 T

 Since 0 is an eigenval for one but not the other,

 their char. polys are different. But similar matrices do have the same char. polys.

 l) In any basis of $\text{Nul}(A)$, there is exactly one vector.

 T
2. Let $B = \begin{bmatrix} 5 & 1 & 2 \\ -5 & 11 & 2 \\ 10 & -4 & 2 \end{bmatrix}$ Here are some facts about B:

(i) $\mathbf{v} = \begin{bmatrix} 1 \\ 1 \\ -3 \end{bmatrix}$ is in $\text{Nul}(B)$,

(ii) $\lambda = 10$ is an eigenvalue of B,

(iii) $\mathbf{u} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ is an eigenvector for B.

You should be able to answer these questions without finding any determinants and with maybe just one reference.

a) What is the eigenvalue corresponding to the eigenvector \mathbf{u}?

we find $B\mathbf{u} = \begin{bmatrix} 8 \\ 8 \\ 8 \end{bmatrix} = 8 \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = 8\mathbf{u}$ so $\lambda = 8$

b) What is the characteristic polynomial of B in factored form?

Fact (i) above tells us that $\lambda = 0$ is an eigenvalue of B.

Fact (ii) gives that $\lambda = 10$ is a "λ" λ λ λ λ λ λ λ λ.

Part (a) says $\lambda = 8$ is an eigenvalue of B. Since B is 3×3, its characteristic poly has degree 3, and we have 0, 10, and 8 are roots. In fact they must all be zero and each must be multiplicity 1 (or the degree of the poly would be > 3).

So that poly is $(\lambda - 0)(\lambda - 10)(\lambda - 8)$ or $\lambda(\lambda - 10)(\lambda - 8)$

c) Show that B is diagonalizable by exhibiting P, D and P^{-1} that have the required properties.

Since each eigenvalue has multiplicity one, their eigenspaces have dimension one also.

We have an eigenvector for each of $\lambda = 0$ and $\lambda = 8$ and we need one

for $\lambda = 10$. Row reduction of $(B - 10I) = \begin{bmatrix} 5 & 1 & 2 \\ -5 & 11 & 2 \\ 10 & -4 & 2 \end{bmatrix}$ yields $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ is a basis for

null $(B - 10I)$ and hence a basis for the eigenspace $\lambda = 10$

Let $P = \begin{bmatrix} 1 & 0 & 1 \\ 1 & -2 & 1 \\ -3 & 1 & 1 \end{bmatrix}$; these 3 columns are

eigenvectors corresponding
to $\lambda = 0$, 10, and 8 respectively; hence

$D = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 10 & 0 \\ 0 & 0 & 8 \end{bmatrix}$

Finally, knowing the eigenvectors corresponding to distinct eigenvalues must form a L.I. set, so we expect P^{-1} to exist and sure enough,

by calculator, $P^{-1} = \begin{bmatrix} \frac{3}{8} & \frac{-1}{8} & \frac{-1}{8} \\ \frac{1}{8} & \frac{1}{8} & \frac{1}{8} \\ \frac{1}{8} & \frac{1}{8} & \frac{1}{8} \end{bmatrix} = \frac{1}{8} \begin{bmatrix} 3 & -1 & -2 \\ 1 & -4 & 0 \\ 1 & -4 & 0 \end{bmatrix}$
3. Let \(C = \begin{bmatrix} 4 & 3 & -1 \\ 0 & 7 & -1 \\ 0 & 6 & 2 \end{bmatrix} \).

a) Find the characteristic polynomial of \(C \) in factored form starting from \(\det(C - \lambda I) \); show all your work.

Use the 1st column:
\[
\det \left(\begin{bmatrix} 4 - \lambda & 3 & -1 \\ 0 & 7 - \lambda & -1 \\ 0 & 6 & 2 - \lambda \end{bmatrix} \right)
\]
\[
= (4-\lambda) \begin{vmatrix} 7-\lambda & -1 \\ 6 & 2-\lambda \end{vmatrix}
= (4-\lambda)(7-\lambda)(2-\lambda) + 6
= (4-\lambda)(7-\lambda)(2-\lambda) + 6
= (4-\lambda)(\lambda^2 - 9\lambda + 20)
= (4-\lambda)(\lambda - 4)(\lambda - 5)
\]

b) One of the eigenvalues should have multiplicity 2. Find a basis for the eigenspace of that eigenvalue.

\(\lambda = 4 \) has multiplicity 2.

Now, \((C - 4I) = \begin{bmatrix} 0 & 3 & -1 \\ 0 & 3 & -1 \\ 0 & 6 & -2 \end{bmatrix} \sim \begin{bmatrix} 0 & 1 & -\frac{1}{2} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \)

And the nullspace of this matrix is "\(x_1 \) is free, \(x_2 = \frac{1}{2} x_3 \), i.e., all L.C.'s \(x_1 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} 0 \\ 0 \\ \frac{1}{2} \end{bmatrix} \)

And a basis for this nullspace is a basis for the eigenspace of \(C \) for \(\lambda = 4 \)

is \(\left\{ \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} \right\} \)

c) Without actually finding \(P, D \) and \(P^{-1} \), explain why \(C \) is diagonalizable. \(D \) exists because we have the eigenvalues 4, 4, and 5; more importantly, the dimension of each eigenspace matches the multiplicity of the eigenvalue and the sum of these is 3, so we can construct \(P \) with corresponding LI columns; \(P^{-1} \) also exists now...
4. Let M be the 4×4 matrix here. FACT: The product of

$$
\begin{bmatrix}
6 & 1 & 2 & 7 \\
2 & 6 & 2 & -4 \\
2 & 3 & 6 & -3 \\
2 & -4 & 2 & 6
\end{bmatrix}
\text{ and }
\begin{bmatrix}
12 & 7 & 5 & -3 \\
-1 & 2 & 6 & 2 \\
0 & 6 & 7 & 1 \\
7 & 0 & 0 & 2
\end{bmatrix}
\begin{bmatrix}
10 & 0 & 10 & -2 \\
0 & 0 & 12 & -1 \\
-1 & 0 & 14 & 6 \\
0 & 0 & 0 & 3
\end{bmatrix}

$$
is
\begin{bmatrix}
120 & 56 & 50 & 0 \\
-10 & 38 & 60 & 0 \\
0 & 56 & 70 & -4 \\
70 & 18 & 0 & 0
\end{bmatrix}

(a) Use this fact to find the eigenvalues of M, and bases for their respective eigenspaces. Not the fact contains useful and not useful information!

- The first column of the product says $\lambda = 10$ is an eigenvalue & $\begin{bmatrix} -1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$ is an eigenvector for $\lambda = 10$.
- Second column says merely that $\begin{bmatrix} 2 \\ 6 \\ 0 \\ 0 \end{bmatrix}$ is NOT an eigenvector.
- Third column says $\lambda = 10$ is an eigenvalue & $\begin{bmatrix} 5 \\ 6 \\ 2 \\ 0 \end{bmatrix}$ is an eigenvector (so at this point we know dim(eigenspace) is at least 2, because the 2 vectors are a L.I. set).
- Fourth column says $\begin{bmatrix} -\frac{1}{2} \\ -\frac{3}{2} \\ -\frac{2}{2} \\ 0 \end{bmatrix}$ is in $\text{Null}(M)$ so $\lambda = 0$ is an eigenvalue, and $\begin{bmatrix} -\frac{1}{2} \\ -\frac{3}{2} \\ -\frac{2}{2} \\ 0 \end{bmatrix}$ is an eigenvector for $\lambda = 0$.
- Fifth column says $\lambda = 4$ is an eigenvalue & $\begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$ is a corresponding eigenvector.
- Sixth column says $M^6 = 0$ which is not useful here.
- Seventh column says $\lambda = 10$ is an eigenvalue and $\begin{bmatrix} 10 \\ 12 \\ 14 \\ 16 \end{bmatrix}$ is a corresponding eigenvector.

BUT the vector is a L.I. of the previous two eigenvectors for $\lambda = 10$, and so it tells us NOTHING NEW and does NOT imply the dim. of the eigenspace nor the multiplicity of $\lambda = 10$ is (nor) 3!!

- Eighth column says $\begin{bmatrix} -\frac{1}{2} \\ -\frac{3}{2} \\ -\frac{2}{2} \\ 0 \end{bmatrix}$ is NOT an eigenvector (BE CAREFUL).

So we have $\lambda = 10$, $\lambda = 0$, and $\lambda = 4$. Since M is 4×4, its char poly is degree 4. So at most one of these eigen values has multiplicity > 1. On the other hand, since we've already found a set of 2 L.I. eigenvectors for $\lambda = 10$, its eigenspace must have dim > 2, and since "dim(eigenspace) \leq \text{multiplicity}", the mult. of $\lambda = 10$ is at least 2 also. But it can't be more than 2 since then the char. poly has degree more than 4; the other 3 eigenvalues have eig spaces of exactly 1 and indeed, we even have enough eig vectors to make the bases! SO: here's a table:

<table>
<thead>
<tr>
<th>Eigenvalue λ</th>
<th>10</th>
<th>0</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basis for corresp. Eigenspace</td>
<td>$\begin{bmatrix} -1 \ 1 \ 0 \ 0 \end{bmatrix}$</td>
<td>$\begin{bmatrix} 1 \ 0 \ 0 \ 0 \end{bmatrix}$</td>
<td>$\begin{bmatrix} 0 \ 0 \ 1 \ 0 \end{bmatrix}$</td>
</tr>
</tbody>
</table>

(b) Is M diagonalizable? (Y/N)

(Y)
5. Let \(D = \begin{bmatrix} a & 0 & 1 \\ c & 2 & 0 \\ 1 & 0 & e \end{bmatrix} \) and suppose \(\det(D) = -10 \). Find each of the following:

(a) \(\det(D^3) \)
\[
= \det(D \cdot D \cdot D) = \det(D) \cdot \det(D) \cdot \det(D) = (-10) \cdot (-10) \cdot (-10) = -1000
\]

(b) \(\det(3D) \)
Since each row of \(D \) gets multiplied by 3, and the determinant changes by "3 factors of 3" so, \(\det(3D) = 3 \cdot 3 \cdot 3 \cdot (-10) = -270 \)

(c) \(\det(D+D) \neq \det(D) + \det(D) = -20 \)
In fact, \(\det(D+D) = \det(2D) = 2 \cdot 2 \cdot 2 \cdot \det(-10) = 8 \cdot -10 = -80 \)

(d) \(\det(D^{-1}) = \frac{1}{\det(D)} \) if \(\det(D) \neq 0 \);
So \(\frac{1}{-10} \)

(e) \(|(D)| \)
\[
= \left| \begin{array}{ccc} -10 \\ -10 \\ -10 \end{array} \right| = -10 \\
= \text{absolute value of } -10
\]
\[
= 10
\]

(f) \(|D^T| = \det(D) = (-10) \)

(g) \(ae \)
Use the top row:
\[
\det(D) = ae \left| \begin{array}{cc} 2 & 0 \\ 0 & e \end{array} \right| + 1 \left| \begin{array}{cc} 0 & 2 \\ 1 & 0 \end{array} \right| \\
-10 = ae \cdot 2e + 1 \cdot (-2) \\
-8 = 2ae
\]
\[
ae = -4
\]

(h) \(\det \left(\begin{bmatrix} a & 0 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & e \end{bmatrix} \right) \)
This is a diagonal matrix.
So its det. is \(a \cdot 2 \cdot e \)
\[
= 2ae \\
= -8 \text{ (from part (g))}
\]

\(\text{OR use the middle column!} \)
\[
\det(D) = 2 \left| \begin{array}{c} a \\ 0 \\ 1 \end{array} \right| \\
-10 = 2 (ae - 1) \\
-10 = 2ae - 2 \\
-8 = 2ae \therefore ae = -4 \text{ (again)}
\]