1.) (5 pts.) Evaluate the limit \(\lim_{{x \to \infty}} \frac{7x^2 - 2x + 1}{13x^2 + 8x} \). You need to show steps here or describe your thought process; if your answer is just a number, you will receive no credit.

\[
\frac{7x^2 - 2x + 1}{13x^2 + 8x} = \frac{x^2 \left(7 - \frac{2}{x} + \frac{1}{x^2} \right)}{x^2 \left(13 + \frac{8}{x} \right)} \quad \rightarrow \quad \frac{7}{13} \quad \text{as} \quad x \to \infty
\]

2.) (5 pts.) Suppose we want to maximize a profit function \(P(x) \). We find that there are two critical points, at \(x = 2 \) and \(x = 4 \). Describe a calculus test we can use to determine whether the profit is maximized, minimized, or neither at these points.

Second Derivative Test:

At, say, \(x = 2 \):

- If \(P''(2) > 0 \),
 - \(P \) is concave up
 - \(P \) has a min at \(x = 2 \)
- If \(P''(2) < 0 \),
 - \(P \) is concave down
 - \(P \) has a max at \(x = 2 \)
- If \(P'' = 0 \), not enough information
 (Similarly for \(x = 4 \).)

First Derivative Test:

Test the signs of \(P' \) at points less than 2, between 2 and 4, and greater than 4. If, around \(x = 2 \) or \(x = 4 \),

- \(P \) changes from negative to positive
 THEN \(P \) has a min at that \(x \)-value

- \(P \) changes from positive to negative
 THEN \(P \) has a max at that \(x \)-value