Math 106: Review for Exam II

INTEGRATION TIPS

- Substitution: usually let \(w = \) an inside function, especially if \(w' \) is also present in the integrand.

- Parts: \(\int u \, dv = uv - \int v \, du \) or \(\int uv' \, dx = uv - \int u'v \, dx \)

How to choose which part is \(u \)? Let \(u \) be the part that is higher up in the LIATE mnemonic below.
(The mnemonics ILATE and LIPET will work equally well if you have learned one of those instead; in the latter \(A \) is replaced by \(P \), which stands for “polynomial”.)

Logarithms (such as \(\ln x \))
Inverse trig (such as \(\arctan x, \arcsin x \))
Algebraic (such as \(x, x^2, x^3 + 4 \))
Trig (such as \(\sin x, \cos 2x \))
Exponentials (such as \(e^x, e^{3x} \))

- Rational Functions (one polynomial divided by another): if the degree of the numerator is greater than or equal to the degree of the numerator, do long division then integrate the result.

Partial Fractions: here’s an illustrative example of the setup.

\[
\frac{3x^2 + 11}{(x + 1)(x - 3)^2(x^2 + 5)} = \frac{A}{x + 1} + \frac{B}{x - 3} + \frac{C}{(x - 3)^2} + \frac{Dx + E}{x^2 + 5}
\]

Each linear term in the denominator on the left gets a constant above it on the right; the squared linear factor \((x - 3) \) on the left appears twice on the right, once to the second power. Each irreducible quadratic term on the left gets a linear term \((Dx + E) \) above it on the right.

- Trigonometric Antiderivatives: some useful formulae follow.

\[
\begin{align*}
\sin^2 x + \cos^2 x &= 1 \\
\sin^2 x &= \frac{1}{2} - \frac{\cos(2x)}{2} \\
\tan^2 x + 1 &= \sec^2 x \\
\cos^2 x &= \frac{1}{2} + \frac{\cos(2x)}{2} \\
\sin(2x) &= 2\sin x \cos x
\end{align*}
\]

- Improper integrals: look for \(\infty \) as one of the limits of integration; look for functions that have a vertical asymptote in the interval of integration.

Know the following limits.

\[
\begin{align*}
\lim_{x \to \infty} e^x &= \\
\lim_{x \to -\infty} e^{-x} &= \quad \text{Note: this is the same as } \lim_{x \to -\infty} e^x \\
\lim_{x \to -\infty} 1/x &= \quad \text{Note: the answer is the same for } \lim_{x \to -\infty} 1/x^2 \text{ and similar functions} \\
\lim_{x \to 0^+} 1/x &= \quad \text{Note: the answer is the same for } \lim_{x \to 0^+} 1/x^2 \text{ and similar functions} \\
\lim_{x \to \infty} \ln x &= \\
\lim_{x \to -\infty} \ln x &= \\
\lim_{x \to \infty} \arctan x &=
\end{align*}
\]
1. Evaluate the following.

(a) \(\int x^3 \ln x \, dx \)

(b) \(\int x^4 e^{x^3} \, dx \)

(c) \(\int \frac{3x^2 + 2x - 13}{(x - 3)(x^2 + 1)} \, dx \)

(d) \(\int \frac{4x^3 - 27x^2 + 20x - 17}{x - 6} \, dx \)

(e) \(\int_1^3 \frac{1}{x - 1} \, dx \)
2. When you retire from your job, forty-five years from now, you will begin to receive a pension that begins at $100,000 per year and increases at a continuous rate of 3% per year until you die thirty years later. Set up, but do not evaluate, an integral equal to the present value of your pension payments assuming a continuous interest rate of 5%.
3. Find the second-degree Taylor polynomial for \(f(x) = \sqrt{x} \) centered at \(x = 100 \).

4. What is the maximum possible error that can occur in your Taylor approximation from the previous problem on the interval \([100, 110]\)?

5. Use comparisons to show whether each of the following converges or diverges. If an integral converges, also give a good upper bound for its value.

 (a) \(\int_1^\infty \frac{6 + \cos x}{x^{0.99}} \, dx \)

 (b) \(\int_1^\infty \frac{4x^3 - 2x^2}{2x^4 + x^5 + 1} \, dx \)