Name:_

Math 206: Fall 2013 Exam 2: November 1

calculator allowed

Correct answers accompanied by incorrect or incomplete work will not receive full credit. Good Luck!

- 1. (3 points each) Determine whether each of the following statements is *true* or *false*. No justification necessary, no partial credit available.
 - (a) If $f_x(0,0)$ and $f_y(0,0)$ exist, then f must be differentiable at (0,0).
 - (b) A partial derivative is a specific example of a directional derivative.
 - (c) $\nabla f(a, b)$ is perpendicular to the graph of z = f(x, y) at the point (a, b).
 - (d) Vectors \vec{a} and \vec{b} are as pictured in the diagram, both are in the *xy*-plane. True/False: $\vec{a} \times \vec{b} = t\hat{k}$, where t is a positive number.

2. (5 points) Consider the function g(x, y) with contour diagram below. Sketch a vector that points in the direction of $\nabla g(1, 0.75)$.

3. (8 points) The consumption of beef by one household, C (in pounds per week) is given by the function C = f(I, p), where I is the annual household income in thousands of dollars, and p is the price of beef in dollars per pound. Explain the meaning of the statement: $f_I(80,3) = 0.022$, include units in your answer.

		Price of beef, p (\$/lb)			
		3	3.5	4	4.5
Household	20	2.65	2.59	2.51	2.43
income	40	4.14	4.05	3.94	3.88
per year,	60	5.11	5.00	4.97	4.84
I (\$1000)	80	5.35	5.29	5.19	5.07

4. (12 points) The table of some values of C = f(I, p) is given below. Find a linearization of f at (40, 3).

5. (15 points) Find the equation of the plane tangent to $z^2 + 2zy + 4y = x^2 + 3$ at the point (3, 1, -4).

6. (15 points) Let $w = 3x \cos y$. If $x = u^2 + v^2$ and $y = \frac{v}{u}$, find $\frac{\partial w}{\partial u}$ at the point (u, v) = (2, 3). Give your answer to 2 decimal places. (Set your calculator to radians.)

7. (12 points) Suppose that $f_x(x,y) = \frac{1}{2}(x+2y)^{-1/2}$ and $f_y(x,y) = (x+2y)^{-1/2}$. Also suppose that f(1,0) = 1. Find the quadratic Taylor polynomial (i.e., the quadratic approximation) of f(x,y) at (1,0).

8. (10 points) Using the contour diagram for f(x, y), find the sign of $f_{yy}(P)$ given that $f_{xx}(P) < 0$. Justify your answer.

- 9. (8 points) Select ALL the planes that could NOT be tangent planes to the graph of a function f(x, y) = z that is differentiable everywhere. (Briefly justify your choices.)
 - (a) 3x 5y z = 2
 - (b) 5x + 3y = 2
 - (c) 3x + 5y = 2
 - (d) 3x + 5y + z = 2
 - (e) 5y = 2