Old Math 106 Quizzes

Click on the date of each quiz in order to view it. If a solution set is available, you may click on it at the far right.

Text sections denoted (O/Z) refer to the second edition of Calculus by Ostebee and Zorn.

Text sections denoted (H-H) refer to the third edition of Calculus by Hughes-Hallett, Gleason, et al.

You may need Adobe Reader to view some of the files. You can get a free copy here.

Term
Date
Instructor
Topic(s)
Text Sections
Solutions
F14
Ross
(Quiz 1) the area function as an antiderivative, substitution, approximating integrals numerically (O/Z) 5.1, 5.2, 5.3, 5.4, 6.1
F14
Ross
(Quiz 2) approximating integrals numerically, error bounds for these approximations, arc length (O/Z) 6.1, 6.2, 7.1
W14
Wong
substitution (O/Z) 5.4
W14
Wong
numerical integrals and their error bounds (O/Z) 6.1, 6.2
W14
Wong
area, volume (O/Z) 7.1, 7.2
W14
Wong
integration by parts, partial fractions (O/Z) 8.1, 8.2
W14
Wong
trigonometric antiderivatives, miscellaneous antiderivatives (O/Z) 8.3, 8.4
W14
Wong
Taylor polynomials (O/Z) 9.1
W14
Wong
improper integrals, comparisons of improper integrals (O/Z) 10.1, 10.2
W14
Wong
sequences, geometric series (O/Z) 11.1, 11.2
W14
Wong
convergence tests for series, absolute and conditional convergence (O/Z) 11.3, 11.4
W14
Wong
power series, power series as functions (O/Z) 11.5, 11.6
F13
Harkleroad
substitution, numerical integration (O/Z) 5.4, 6.1
no
F13
Harkleroad
integration by parts, partial fractions (O/Z) 8.1, 8.2
no
F13
Harkleroad
sequences, convergence tests for series (O/Z) 11.1, 11.2, 11.3
no
F13
Wong
substitution (O/Z) 5.4
F13
Wong
area, numerical integration (O/Z) 6.1, 7.1
F13
Wong
volume (O/Z) 7.2
F13
Wong
integration by parts, partial fractions (O/Z) 8.1, 8.2
F13
Wong
trigonometric antiderivatives, miscellaneous antiderivatives (O/Z) 8.3, 8.4
F13
Wong
Taylor polynomials, improper integrals (O/Z) 9.1, 10.1
F13
Wong
sequences, geometric series (O/Z) 11.1, 11.2
F13
Wong
integral test, ratio test (O/Z) 11.2, 11.3
F13
Wong
alternating series test (O/Z) 11.4
F13
Wong
power series, power series as functions (O/Z) 11.5, 11.6
W13
Ross
(Quiz 1) area function, the FTC (O/Z) 5.1, 5.2, 5.3
W13
Ross
(Quiz 2) error bounds for numerical methods of integration (O/Z) 6.2
W13
Ross
(Quiz 3) integration by parts, partial fractions (O/Z) 8.1, 8.2
W13
Ross
(Quiz 4) partial fractions, trigonometric substitution (O/Z) 8.2, 8.3
W13
Ross
(Quiz 5) error bounds for Taylor polynomials (O/Z) 9.2
W13
Ross
(Quiz 6) sequences (O/Z) 11.1
W13
Ross
(Quiz 7) integral test, estimating the value of a series (O/Z) 11.3
W13
Ross
(Quiz 8) interval and radius of convergence (O/Z) 11.6
F12
Coulombe
substitution, numerical integrals (O/Z) 5.4, 6.1
F12
Coulombe
error bounds for numerical integrals, area between curves (O/Z) 6.2, 7.1
F12
Coulombe
integration by parts (O/Z) 8.1
F12
Coulombe
trigonometric antiderivatives (O/Z) 8.3
F12
Coulombe
sequences (O/Z) 11.1
F12
Coulombe
convergence tests for series (O/Z) 11.2, 11.3
F12
Coulombe
ratio test, alternating series test, absolute and conditional convergence (O/Z) 11.3, 11.4
F12
Nelson
substitution, numerical integrals (O/Z) 5.4, 6.1
F12
Nelson
integration by parts, partial fractions, trigonometric substitution (O/Z) 8.1, 8.2, 8.3
F12
Nelson
convergence tests for series (O/Z) 11.2, 11.3
F12
Nelson
alternating series test, ratio test, absolute and conditional convergence (O/Z) 11.3, 11.4
F12
Weiss
substitution, numerical integrals and their error bounds (O/Z) 5.4, 6.1, 6.2
no
F12
Weiss
integration by parts, partial fractions, trigonometric antiderivatives (O/Z) 8.1, 8.2, 8.3
no
F12
Weiss
integration by parts, partial fractions, trigonometric antiderivatives (O/Z) 8.1, 8.2, 8.3
no
F12
Weiss
Taylor polynomials, Taylor's Theorem (O/Z) 9.1, 9.2
no
F12
Weiss
convergence tests for series (O/Z) 11.2, 11.3
no
W12
Nelson
numerical integrals and their error bounds (O/Z) 6.1, 6.2
W12
Nelson
integration by parts, partial fractions, trigonometric substitution (O/Z) 8.1, 8.2, 8.3
W12
Nelson
series convergence tests (O/Z) 11.1, 11.2, 11.3, 11.4
W12
Ross
(Quiz 1) area function, two versions of the FTC (O/Z) 5.2, 5.3
W12
Ross
(Quiz 2) substitution, numerical integration (O/Z) 5.4, 6.1
W12
Ross
(Quiz 3) error bounds for numerical integration, arc length (O/Z) 6.2, 7.1
W12
Ross
(Quiz 4) integration by parts, partial fractions (O/Z) 8.1, 8.2
W12
Ross
(Quiz 5) trigonometric subsitution, Taylor polynomials (O/Z) 8.3, 9.1
W12
Ross
(Quiz 6) Taylor's Theorem, improper integrals (O/Z) 9.2, 10.1
W12
Ross
(Quiz 7) geometric series (O/Z) 11.2
W12
Ross
(Quiz 8) tails of geometric series, series comparison, use of LHS program to find partial sums, absolute and conditional convergence (O/Z) 11.2, 11.3, 11.4
F11
Nelson
substitution (O/Z) 5.4
F11
Nelson
numerical integrals and their error bounds (O/Z) 6.1, 6.2
F11
Nelson
substitution, integration by parts, separation of variables (O/Z) 5.4, 7.4, 8.1
F11
Nelson
partial fractions, trigonometric antiderivatives (O/Z) 8.2, 8.3
F11
Nelson
sequences, convergence tests for series (O/Z) 11.1, 11.2, 11.3
F11
Wong
substitution (O/Z) 5.4
F11
Wong
numerical integration, area (O/Z) 6.1, 7.1
F11
Wong
volume (O/Z) 7.2
F11
Wong
integration by parts, partial fractions (O/Z) 8.1, 8.2
F11
Wong
trigonometric antiderivatives, miscellaneous antiderivatives (O/Z) 8.3, 8.4
F11
Wong
Taylor polynomials, Taylor's Theorem (O/Z) 9.1, 9.2
F11
Wong
improper integrals, comparisons of improper integrals (O/Z) 10.1, 10.2
F11
Wong
sequences, geometric series (O/Z) 11.1, 11.2
F11
Wong
ratio test, alternating series (O/Z) 11.3, 11.4
F11
Wong
power series, power series as functions (O/Z) 11.5, 11.6
W11
Coulombe
substitution (O/Z) 5.4
W11
Coulombe
area, volume, error bounds for numerical integrals (O/Z) 6.2, 7.1, 7.2
W11
Coulombe
integration by parts (O/Z) 8.1
W11
Coulombe
partial fractions, trigonometric andtiderivatives (O/Z) 8.2, 8.3
W11
Coulombe
sequences (O/Z) 11.1
W11
Coulombe
geometric series, nth term test (O/Z) 11.2
W11
Coulombe
series convergence tests (O/Z) 11.3
W11
Rozenhart
substitution, numerical integrals and their error bounds (O/Z) 5.4, 6.1, 6.2
no
W11
Rozenhart
substitution, numerical integrals and their error bounds (O/Z) 5.4, 6.1, 6.2
no
W11
Rozenhart
area, arc length, volume (O/Z) 7.1, 7.2
no
W11
Rozenhart
area, arc length, volume (O/Z) 7.1, 7.2
no
W11
Rozenhart
separation of variables, Euler's Method (O/Z) 6.3, 7.4
no
W11
Rozenhart
separation of variables, Euler's Method (O/Z) 6.3, 7.4
no
W11
Rozenhart
integration by parts, partial fractions, trigonometric antiderivatives (O/Z) 8.1, 8.2, 8.3
no
W11
Rozenhart
integration by parts, partial fractions, trigonometric antiderivatives (O/Z) 8.1, 8.2, 8.3
no
W11
Rozenhart
miscellaneous antiderivatives (O/Z) 8.4
no
W11
Rozenhart
miscellaneous antiderivatives (O/Z) 8.4
no
W11
Rozenhart
Taylor polynomials, Taylor's Theorem (O/Z) 9.1, 9.2
no
W11
Rozenhart
Taylor polynomials, Taylor's Theorem (O/Z) 9.1, 9.2
no
W11
Rozenhart
improper integrals, probability, sequences (O/Z) 10.1, 10.3, 11.1
no
W11
Rozenhart
improper integrals, probability, sequences (O/Z) 10.1, 10.3, 11.1
no
W11
Rozenhart
sequences, series convergence tests (O/Z) 11.1, 11.2, 11.3
no
W11
Rozenhart
sequences, series convergence tests (O/Z) 11.1, 11.2, 11.3
no
F10
Coulombe
substitution (O/Z) 5.4
F10
Coulombe
Euler's Method, area (O/Z) 6.3, 7.1
F10
Coulombe
integration by parts (O/Z) 8.1
F10
Coulombe
trigonometric antiderivatives (O/Z) 8.3
F10
Coulombe
Taylor polynomials, improper integrals (O/Z) 9.1, 10.1
F10
Coulombe
sequences (O/Z) 11.1
F10
Coulombe
geometric series, comparison test (O/Z) 11.2, 11.3
F10
Coulombe
ratio test (O/Z) 11.3
F10
Ross
(Quiz 1) area function, substitution, numerical integration (O/Z) 5.2, 5.4, 6.1
F10
Ross
(Quiz 2) error bounds for numerical integrals, arc length (O/Z) 6.2, 7.1
F10
Ross
(Quiz 3) integration by parts, partial fractions (O/Z) 8.1, 8.2
F10
Ross
(Quiz 4) trigonometric antiderivatives (O/Z) 8.3
F10
Ross
(Quiz 5) Taylor polynomials (O/Z) 9.1
F10
Ross
(Quiz 6) sequences, geometric series (O/Z) 11.1, 11.2
F10
Ross
(Quiz 7) comparison test, integral test (O/Z) 11.3
F10
Ross
(Quiz 8) ratio test, alternating series test, absolute and conditional convergence (O/Z) 11.3, 11.4
W10
Balcomb
substitution, numerical integrals and their error bounds (O/Z) 5.4, 6.1, 6.2
no
W10
Balcomb
area, volume (O/Z) 7.1, 7.2
no
W10
Balcomb
integration by parts, partial fractions (O/Z) 8.1, 8.2
no
W10
Balcomb
trigonometric substitution (O/Z) 8.3
no
W10
Balcomb
sequences, series convergence tests (O/Z) 11.1, 11.2
no
W10
Balcomb
series convergence tests (O/Z) 11.3
no
W10
Webster
antiderivatives, substitution (O/Z) 5.4
no
W10
Webster
numerical integration (O/Z) 6.1
no
W10
Webster
error bounds for numerical integrals (O/Z) 6.2
no
W10
Webster
Euler's Method (O/Z) 6.3
no
W10
Webster
arc length, Simpson's Rule (O/Z) 6.1, 7.1
no
W10
Webster
volume (O/Z) 7.2
no
W10
Webster
separation of variables (O/Z) 7.4
no
W10
Webster
integration by parts (O/Z) 8.1
no
W10
Webster
partial fractions (O/Z) 8.2
no
W10
Webster
miscellaneous antiderivatives (O/Z) 8.4
no
W10
Webster
miscellaneous antiderivatives, Taylor polynomials (O/Z) 8.4, 9.1
no
W10
Webster
miscellaneous antiderivatives, Taylor's Theorem (O/Z) 8.4, 9.2
no
W10
Webster
trigonometric antiderivatives, improper integrals (O/Z) 8.3, 10.1
no
W10
Webster
miscellaneous antiderivatives, comparison of improper integrals (O/Z) 8.4, 10.2
no
W10
Webster
sequences (O/Z) 11.1
no
W10
Webster
series convergence tests (O/Z) 11.2
no
W10
Webster
series convergence tests, alternating series (O/Z) 11.2, 11.4
no
W10
Webster
alternating series, absolute versus conditional convergence (O/Z) 11.4
no
W10
Webster
series convergence tests (O/Z) 11.2, 11.3
no
W10
Webster
power series, series convergence tests (O/Z) 11.3, 11.5
no
W10
Webster
power series, power series as functions (O/Z) 11.5, 11.6
no
W10
Webster
power series (O/Z) 11.5
no
F09
Balcomb
error bounds for numerical integrals (O/Z) 6.2
no
F09
Balcomb
Euler's Method (O/Z) 6.3
no
F09
Balcomb
area, volume (O/Z) 7.1, 7.2
no
F09
Balcomb
integration by parts (O/Z) 8.1
no
F09
Balcomb
partial fractions (O/Z) 8.2
no
W09
Balcomb
substitution (O/Z) 5.4
no
W09
Balcomb
numerical integrals (O/Z) 6.1
no
W09
Balcomb
error bounds for numerical integrals (O/Z) 6.2
no
W09
Balcomb
Euler's Method (O/Z) 6.3
no
W09
Balcomb
volume (O/Z) 7.2
no
W09
Balcomb
separation of variables (O/Z) 7.4
no
W09
Balcomb
integration by parts (O/Z) 8.1
no
W09
Balcomb
partial fractions (O/Z) 8.2
no
W09
Balcomb
trigonometric antiderivatives (O/Z) 8.3
no
W09
Balcomb
trigonometric substitution (O/Z) 8.3
no
W09
Balcomb
Taylor polynomials (O/Z) 9.1
no
W09
Balcomb
Taylor's Theorem (O/Z) 9.2
no
W09
Balcomb
improper integrals (O/Z) 10.1
no
W09
Balcomb
finite sums, geometric series (O/Z) 11.1, 11.2
no
W09
Balcomb
series convergence tests (O/Z) 11.2, 11.3
no
W09
Balcomb
series convergence tests, alternating series (O/Z) 11.3, 11.4
no
W09
Salomone
substitution (O/Z) 5.4
W09
Salomone
numerical integrals and their error bounds, Euler's Method (O/Z) 6.1, 6.2, 6.3
W09
Salomone
area, volume, separation of variables (O/Z) 7.1, 7.2, 7.4
W09
Salomone
integration by parts, long division, partial fractions, trigonometric antiderivatives (O/Z) 8.1, 8.2, 8.3
W09
Salomone
improper integrals, comparison of improper integrals (O/Z) 10.1, 10.2
W09
Salomone
Taylor polynomials (O/Z) 9.1
W09
03/20/09
Salomone
sequences, geometric series (O/Z) 11.1, 11.2
W09
03/27/09
Salomone
series convergence tests, alternating series (O/Z) 11.3, 11.4
W09
04/03/09
Salomone
power series, power series as functions (O/Z) 11.5, 11.6
W09
Wong
substitution (O/Z) 5.4
W09
Wong
numerical integrals and their error bounds (O/Z) 6.1, 6.2
W09
Wong
Euler's Method, area (O/Z) 6.3, 7.1
W09
Wong
integration by parts (O/Z) 8.1
W09
Wong
partial fractions, trigonometric substitution (O/Z) 8.2, 8.3
W09
Wong
Taylor polynomials, Taylor's Theorem (O/Z) 9.1, 9.2
W09
Wong
improper integrals, comparison of improper integrals (O/Z) 10.1, 10.2
W09
Wong
sequences, geometric series (O/Z) 11.1, 11.2
W09
Wong
series convergence tests, alternating series (O/Z) 11.3, 11.4
W09
Wong
power series, power series as functions (O/Z) 11.5, 11.6
F08
Balcomb
substitution, numerical integration (O/Z) 5.4, 6.1
no
F08
Balcomb
error bounds for numerical integrals, Euler's Method (O/Z) 6.2, 6.3
no
F08
Balcomb
area, volume, work (O/Z) 7.1, 7.2, 7.3
no
F08
Balcomb
integration by parts, partial fractions, trigonometric antiderivatives (O/Z) 8.1, 8.2, 8.3
no
F08
Balcomb
trigonometric antiderivatives (O/Z) 8.3
no
F08
Balcomb
Taylor polynomials (O/Z) 9.1
no
F08
Balcomb
geometric series, nth term test (O/Z) 11.2
no
F08
Haines
substitution (O/Z) 5.4
no
F08
Haines
numerical integrals and their error bounds (O/Z) 6.1, 6.2
no
F08
Haines
error bounds for numerical integrals (O/Z) 6.2
no
F08
Haines
Euler's Method (O/Z) 6.3
no
F08
Haines
arc length (O/Z) 7.1
no
F08
Haines
volume (O/Z) 7.2
no
F08
Haines
volume (O/Z) 7.2
no
F08
Haines
work (O/Z) 7.3
no
F08
Haines
integration by parts (O/Z) 8.1
no
F08
Haines
partial fractions (O/Z) 8.2
no
F08
Haines
trigonometric antiderivatives (O/Z) 8.3
no
F08
Haines
miscellaneous antiderivatives (O/Z) 8.4
no
F08
Haines
Taylor polynomials (O/Z) 9.1
no
F08
Haines
Taylor's Theorem (O/Z) 9.2
no
F08
Haines
improper integrals (O/Z) 10.1
no
F08
Haines
comparisons of improper integrals (O/Z) 10.2
no
F08
Haines
estimating values of improper integrals (O/Z) 10.2
no
F08
Haines
sequences (O/Z) 11.1
no
F08
Haines
geometric series, nth term test (O/Z) 11.2
no
F08
Haines
convergence tests for series (O/Z) 11.3
no
F08
Haines
convergence tests for series (O/Z) 11.3
no
F08
Haines
convergence tests for series, alternating series (O/Z) 11.4
no
F08
Haines
alternating series (O/Z) 11.4
no
F08
Haines
power series (O/Z) 11.5
no
F08
Haines
power series (O/Z) 11.5
no
F08
Haines
power series as functions (O/Z) 11.6
no
F08
Haines
power series (O/Z) 11.5
no
W08
Shor
substitution (O/Z) 5.4
W08
Shor
numerical integrals and their error bounds (O/Z) 6.1, 6.2
W08
Shor
Euler's Method, area (O/Z) 6.3, 7.1
W08
Shor
integration by parts, long division (O/Z) 8.1, 8.2
W08
Shor
trigonometric antiderivatives, Taylor polynomials (O/Z) 8.3, 9.1
W08
Shor
Taylor's Theorem, improper integrals (O/Z) 9.2, 10.1
W08
Shor
sequences, geometric series (O/Z) 11.1, 11.2
W08
Shor
convergence tests for series (O/Z) 11.2, 11.3
W08
Shor
alternating series, power seres (O/Z) 11.4, 11.5
W08
Wong
substitution (O/Z) 5.4
W08
Wong
numerical integrals and their error bounds (O/Z) 6.1, 6.2
W08
Wong
Euler's Method, area, volume (O/Z) 6.3, 7.1, 7.2
W08
Wong
integration by parts, partial fractions (O/Z) 8.1, 8.2
W08
Wong
trigonometric substitution (O/Z) 8.3
W08
Wong
Taylor polynomials (O/Z) 9.1
W08
Wong
improper integrals and their comparisons, probability (O/Z) 10.1, 10.2, 10.3
W08
Wong
sequences, geometric series (O/Z) 11.1, 11.2
W08
Wong
convergence tests for series, alternating series (O/Z) 11.3, 11.4
W08
Wong
power series, Taylor series (O/Z) 11.5, 11.6, 11.7
F07
Haines
substitution (O/Z) 5.4
no
F07
Haines
numerical integrals (O/Z) 6.1
no
F07
Haines
numerical integrals and their error bounds (O/Z) 6.1, 6.2
no
F07
Haines
Euler's Method (O/Z) 6.3
no
F07
Haines
arc length (O/Z) 7.1
no
F07
Haines
volume (O/Z) 7.2
no
F07
Haines
work (O/Z) 7.3
no
F07
Haines
separation of variables (O/Z) 7.4
no
F07
Haines
integration by parts (O/Z) 8.1
no
F07
Haines
partial fractions (O/Z) 8.2
no
F07
Haines
trigonometric antiderivatives (O/Z) 8.3
no
F07
Haines
trigonometric antiderivatives (O/Z) 8.3
no
F07
Haines
miscellaneous antiderivatives (O/Z) 8.4
no
F07
Haines
Taylor polynomials (O/Z) 9.1
no
F07
Haines
Taylor's Theorem (O/Z) 9.2
no
F07
Haines
improper integrals (O/Z) 10.1
no
F07
Haines
comparisons of improper integrals (O/Z) 10.2
no
F07
Haines
comparisons of improper integrals (O/Z) 10.2
no
F07
Haines
sequences (O/Z) 11.1
no
F07
Haines
geometric series (O/Z) 11.2
no
F07
Haines
integral test (O/Z) 11.3
no
F07
Haines
ratio test (O/Z) 11.3
no
F07
Haines
alternating series test (O/Z) 11.4
no
F07
Haines
alternating series error bound (O/Z) 11.4
no
F07
Haines
radius and interval of convergence (O/Z) 11.5
no
F07
Haines
power series as functions (O/Z) 11.6
no
F07
Haines
power series as functions, interval of convergence (O/Z) 11.6
no
W07
Shor
substitution (O/Z) 5.4
W07
Shor
numerical integrals and their error bounds (O/Z) 6.1, 6.2
W07
Shor
Euler's Method, area (O/Z) 6.3, 7.1
W07
Shor
separation of variables, integration by parts (O/Z) 7.4, 8.1
W07
Shor
trigonometric antiderivatives, Taylor polynomials (O/Z) 8.3, 9.1
W07
Shor
sequences, geometric series (O/Z) 10.1, 10.2
W07
Wong
the area function, substitution (O/Z) 5.2, 5.4
W07
Wong
numerical integrals and their error bounds (O/Z) 6.1, 6.2
W07
Wong
Euler's Method, area, volume (O/Z) 6.3, 7.1, 7.2
W07
Wong
separation of variables, integration by parts (O/Z) 7.4, 8.1
W07
Wong
partial fractions, trigonometric substitution (O/Z) 8.2-8.3
W07
Wong
Taylor polynomials (O/Z) 9.1
W07
Wong
sequences, geometric series (O/Z) 11.1, 11.2
W07
Wong
integral test, ratio test (O/Z) 11.3
W07
Wong
absolute and conditional convergence, power series (O/Z) 11.4, 11.5
W07
Wong
power series as functions, Taylor series (O/Z) 11.6, 11.7
F06
Shor
area, arc length, and volume (O/Z) 7.1, 7.2
F06
Shor
error bounds on numerical integrals, Euler's Method (O/Z) 6.2, 6.3
F06
Shor
substitution, numerical integrals (O/Z) 5.4, 6.1
F06
Shor
separation of variables, integration by parts, partial fractions (O/Z) 7.4, 8.1-8.2
F06
Shor
polynomial division, trig substitution (O/Z) 8.2-8.4
F06
Shor
Taylor polynomials, Taylor's Theorem (O/Z) 9.1-9.2
F06
Shor
sequences, geometric series (O/Z) 11.1-11.2
W06
Jayawant
substitution, numerical integrals and their error bounds, Euler's Method (O/Z) 5.4, 6.1-6.3
W06
Jayawant
integration by parts, partial fractions, trigonometric antiderivatives (O/Z) 8.1-8.3
W06
Jayawant
Taylor polynomials and Taylor's Theorem (O/Z) 9.1-9.2
W06
Jayawant
series, convergence tests (O/Z) 11.1-11.4
W06
Wong
substitution, numerical integration (O/Z) 5.4, 6.1
W06
Wong
error bounds on numerical integrals, Euler's Method (O/Z) 6.2, 6.3
W06
Wong
areas and volumes by integration (O/Z) 7.1, 7.2
W06
Wong
separation of variables, integration by parts (O/Z) 7.4, 8.1
W06
Wong
trigonometric antiderivatives (O/Z) 8.3
W06
Wong
Taylor polynomials (O/Z) 9.1
W06
Wong
computing and comparing improper integrals (O/Z) 10.1, 10.2
W06
Wong
sequences, geometric series (O/Z) 11.1, 11.2
W06
Wong
power series (O/Z) 11.5, 11.6
F05
Wong
Fundamental Theorem of Calculus, substitution (O/Z) 5.3, 5.4
F05
Wong
numerical integrals and their error bounds (O/Z) 6.1, 6.2
F05
Wong
areas and volumes by integration (O/Z) 7.1, 7.2
F05
Wong
present value, integration by parts (O/Z) 7.5, 8.1
F05
Wong
partial fractions, trigonometric antiderivatives (O/Z) 8.2, 8.3, 8.4
F05
Wong
Taylor polynomials, Taylor's theorem (O/Z) 9.1, 9.2
F05
Wong
computing and comparing improper integrals (O/Z) 10.1, 10.2
F05
Wong
sequences and series (O/Z) 11.1, 11.2
F05
Wong
ratio test, alternating series test (O/Z) 11.3, 11.4
F05
Wong
power series (O/Z) 11.5, 11.6
W05
Haines
integration by substitution (H-H) 7.1
no
W05
Haines
integration by parts (H-H) 7.2
no
W05
Haines
partial fractions (H-H) 7.4
no
W05
Haines
partial fractions (H-H) 7.4
no
W05
Haines
approximating definite integrals (H-H) 7.5
no
W05
Haines
numerical integration including Simpson's Rule (H-H) 7.6
no
W05
Haines
improper integrals (H-H) 7.7
no
W05
Haines
comparisons of improper integrals (H-H) 7.8
no
W05
Haines
area (H-H) 8.1
no
W05
Haines
volumes of revolution (H-H) 8.2
no
W05
Haines
distribution functions (H-H) 8.6
no
W05
Haines
probability, mean, median (H-H) 8.7
no
W05
Haines
geometric sums and series (H-H) 9.1
no
W05
Haines
the nth term test, the integral test (H-H) 9.2
no
W05
Haines
the comparison test (H-H) 9.3
no
W05
Haines
the ratio test, the alternating series test (H-H) 9.3
no
W05
Haines
power series (H-H) 9.4
no
W05
Haines
power series (H-H) 9.4
no
W05
Haines
Taylor polynomials (H-H) 10.1
no
W05
Haines
Taylor polynomials (H-H) 10.1
no
W05
Haines
Taylor series (H-H) 10.2
no
W05
Haines
Taylor series (H-H) 10.2
no
W05
Haines
new Taylor series from old ones (H-H) 10.3
no
W05
Haines
what it means to solve a differential equation (H-H) 11.1
no
W05
Haines
slope fields (H-H) 11.2
no
W05
Haines
Euler's Method (H-H) 11.3
no
W05
Haines
separation of variables (H-H) 11.4
no
W05
Haines
separation of variables (H-H) 11.4
no
W05
Haines
growth and decay (H-H) 11.5
no
W05
Haines
applications and modeling (H-H) 11.6
no
W05
Haines
models of population growth (H-H) 11.7
no
W05
Wong
integration by substitution, integration by parts (H-H) 7.1, 7.2
W05
Wong
partial fractions, numerical integration (H-H) 7.4, 7.5
W05
Wong
improper integrals, volumes of revolution (H-H) 7.7, 8.1, 8.2
W05
Wong
geometric series, the nth term test, the integral test (H-H) 9.1, 9.2
W05
Wong
convergence tests, power series (H-H) 9.3, 9.4
W05
Wong
Taylor polynomials, Taylor series (H-H) 10.1, 10.2
W05
Wong
what it means to solve a differential equation, slope fields (H-H) 11.1, 11.2
W05
Wong
Euler's Method, separation of variables (H-H) 11.3, 11.4
W05
Wong
applications of DEs (H-H) 11.5, 11.6
W05
Wong
models of population growth, systems of DEs (H-H) 11.7-11.9
W04
Johnson
integration by substitution (H-H) 7.1
W04
Johnson
integration by substitution (H-H) 7.1
W04
Johnson
integration by parts (H-H) 7.2
W04
Johnson
integration by parts (H-H) 7.2
W04
Johnson
table of integrals, partial fractions (H-H) 7.3, 7.4
W04
Johnson
table of integrals, partial fractions (H-H) 7.3, 7.4
W04
Johnson
geometric series (H-H) 9.1
W04
Johnson
geometric series (H-H) 9.1
W04
Johnson
series convergence tests (H-H) 9.2, 9.3
W04
Johnson
series convergence tests (H-H) 9.2, 9.3
W04
Johnson
power series, Taylor series (H-H) 9.4, 10.1, 10.2
W04
Johnson
power series, Taylor series (H-H) 9.4, 10.1, 10.2
W04
Johnson
volumes (H-H) 8.1, 8.2
W04
Johnson
volumes (H-H) 8.1, 8.2
W04
Johnson
density, what it means to solve a differential equation (H-H) 8.3, 11.1
W04
Johnson
density, what it means to solve a differential equation (H-H) 8.3, 11.1
W04
Johnson
separation of variables, equilibrium solutions (H-H) 11.4, 11.5
W04
Johnson
separation of variables, equilibrium solutions (H-H) 11.4, 11.5
F03
Johnson
integration by substitution (H-H) 7.1
F03
Johnson
integration by substitution (H-H) 7.1
F03
Johnson
integration by parts (H-H) 7.2
F03
Johnson
integration by parts (H-H) 7.2
F03
Johnson
improper integrals (H-H) 7.3
F03
Johnson
improper integrals (H-H) 7.3
F03
Johnson
tests for convergence of series (H-H) 9.2, 9.3
F03
Johnson
tests for convergence of series (H-H) 9.2, 9.3
F03
Johnson
interval of convergence of power series, finding Taylor series (H-H) 9.4, 10.2
F03
Johnson
interval of convergence of power series, finding Taylor series (H-H) 9.4, 10.2
F03
Johnson
differential equations, separation of variables (H-H) 11.1, 11.4
F03
Johnson
differential equations, separation of variables (H-H) 11.1, 11.4
W03
Haines
substitution (H-H) 7.1
no
W03
Haines
integration by parts (H-H) 7.2
no
W03
Haines
partial fractions (H-H) 7.4
no
W03
Haines
numerical integration (H-H) 7.5
no
W03
Haines
Simpson's Rule (H-H) 7.6
no
W03
Haines
Riemann sums and finding areas (H-H) 8.1
no
W03
Haines
volumes of revolution (H-H) 8.2
no
W03
Haines
density functions (H-H) 8.3
no
W03
Haines
work (H-H) 8.4
no
W03
Haines
economics (present and future value) (H-H) 8.5
no
W03
Haines
probability density functions (H-H) 8.6
no
W03
Haines
geometric series (H-H) 9.1
no
W03
Haines
convergence tests for series (H-H) 9.2, 9.3
no
W03
Haines
convergence tests for series (H-H) 9.3
no
W03
Haines
power series (H-H) 9.4
no
W03
Haines
computing Taylor polynomials (H-H) 10.1
no
W03
Haines
computing Taylor series (H-H) 10.2
no
W03
Haines
computing Taylor series (H-H) 10.2
no
W03
Haines
what it means to solve a differential equation (H-H) 11.1
no
W03
Haines
slope fields (H-H) 11.2
no
W03
Haines
Euler's Method (H-H) 11.3
no
W03
Haines
separation of variables (H-H) 11.4
no
W03
Johnson
integration by substitution (H-H) 7.1
W03
Johnson
integration by parts, tables of integrals (H-H) 7.2, 7.3
W03
Johnson
improper integrals, geometric series (H-H) 7.7, 9.1
W03
Johnson
convergence of infinite series (H-H) 9.2, 9.3
W03
Johnson
power series, Taylor polynomials, Taylor series (H-H) 9.4, 10.1, 10.2, 10.3
W03
Johnson
separation of variables (H-H) 11.4
F02
Towne
substitution, integration by parts, numerical integration (H-H) 7.1, 7.2, 7.5
F02
Towne
improper integrals, volumes (H-H) 7.7, 7.8, 8.1
F02
Towne
volumes of revolution, density, work (H-H) 8.2, 8.3, 8.4
F02
Towne
fluid force, economics, probability (H-H) 8.4, 8.5, 8.6, 8.7
F02
Towne
geometric series, tests for convergence (H-H) 9.1, 9.2, 9.3
F02
Towne
power series, Taylor polynomials (H-H) 9.4, 10.1
F02
Towne
finding and using Taylor series, error in Taylor approximations (H-H) 10.2, 10.3, 10.4
F02
Towne
Euler's Method, separation of variables, DE word problems (H-H) 11.3, 11.4, 11.5, 11.6
W02
Towne
substitution, integration by parts, numerical integration (H-H) 7.1, 7.2, 7.5
W02
Towne
improper integrals, volumes (H-H) 7.7, 7.8, 8.1
W02
Towne
volumes of revolution, arclength, density (H-H) 8.2, 8.3
W02
Towne
work, fluid force, economics (H-H) 8.4,8.5
W02
Towne
geometric sums, tests for convergence (H-H) 9.1, 9.2, 9.3
W02
Towne
power series, Taylor polynomials, Taylor series (H-H) 9.4, 10.1, 10.2
W02
Towne
finding and using Taylor series, error in Taylor approximations (H-H) 10.2, 10.3, 10.4
W02
Towne
Euler's Method, separation of variables, DE word problems (H-H) 11.3, 11.4, 11.5, 11.6
F01
Towne
improper integrals, volumes (H-H) 7.7, 7.8, 8.1
no
F01
Towne
volumes of revolution, density, work (H-H) 8.2, 8.3, 8.4
no
F01
Towne
fluid force, economics (H-H) 8.4, 8.5
no
F01
Towne
geometric sums, tests for convergence, power series (H-H) 9.1, 9.2, 9.3, 9.4
no
F01
Towne
finding and using Taylor polynomials and series (H-H) 10.1, 10.2, 10.3
no
F01
Towne
error in Taylor approximations, what it means to solve DEs (H-H) 10.4, 11.1
no
F01
Towne
Euler's Method, separation of variables, DE word problems (H-H) 11.3, 11.4, 11.5, 11.6
no