Old Math 105 Quizzes

Click on the date of each quiz in order to view it. If a solution set is available, you may click on it at the far right.

Text sections denoted (O/Z) refer to the second edition of Calculus by Ostebee and Zorn.

Text sections denoted (H-H) refer to the third edition of Calculus by Hughes-Hallett, Gleason, et al.

You may need Adobe Reader to view some of the files. You can get a free copy here.

 Term Date Instructor Topic(s) Text Sections Solutions W15 01/23/15 Greer functions, graphs, elementary functions (O/Z) 1.1, 1.2, 1.3 yes W15 01/30/15 Greer derivatives, estimating derivatives (O/Z) 1.4, 1.5, 1.6 yes W15 02/06/15 Greer defining the derivative, limits (O/Z) 2.1, 2.3 yes W15 02/27/15 Greer derivatives of exponential and trigonometric functions (O/Z) 2.6, 2.7 yes W15 03/06/15 Greer chain rule, implicit differentiation (O/Z) 3.2, 3.3 yes W15 03/13/15 Greer miscellaneous derivatives, limits and L'Hopital's Rule (O/Z) 3.5, 4.2 yes W15 03/27/15 Greer Intermediate Value Theorem (O/Z) 4.8 yes W15 04/03/15 Greer related rates, areas and integrals (O/Z) 4.5, 5.1 yes F14 09/12/14 Balcomb functions and graphs (O/Z) 1.1, 1.2, 1.3 no F14 09/19/14 Balcomb geometry of derivatives and of higher-order derivatives (O/Z) 1.4, 1.6, 1.7 no F14 09/26/14 Balcomb defining the derivative, the power rule (O/Z) 2.1, 2.2 no F14 10/13/14 Balcomb differential equations, derivatives of exponential and trig functions (O/Z) 2.5, 2,6, 2.7 no F14 10/24/14 Balcomb chain rule, implicit differentiation (O/Z) 3.2, 3.3 no W14 01/15/14 Buell functions and graphs (O/Z) 1.1, 1.2, 1.3 yes W14 01/24/14 Buell rate functions, geometry of derivatives and of higher-order derivatives (O/Z) 1.4, 1.6, 1.7 yes W14 01/31/14 Buell definition of the derivative, derivatives of power functions, limits (O/Z) 2.1, 2.2, 2.3 yes W14 02/14/14 Buell differential equations, derivatives of exponential, logarithmic, and trigonometric functions (O/Z) 2.5, 2.6, 2.7 yes W14 02/28/14 Buell product rule, quotient rule, chain rule (O/Z) 3.1, 3.2 yes W14 03/07/14 Buell implicit differentiation, derivatives of inverse functions, miscellaneous derivatives and antiderivatives (O/Z) 3.3, 3.4, 3.5 yes W14 03/21/14 Buell related rates, Intermediate Value Theorem, Mean Value Theorem (O/Z) 4.5, 4.8, 4.9 yes W14 03/28/14 Buell areas, integrals, Riemann sums (O/Z) 5.1, 5.6, 5.7 yes F13 09/13/13 Nelson functions and graphs (O/Z) 1.1, 1.2 yes F13 09/20/13 Nelson the geometry of derivatives (O/Z) 1.6 yes F13 09/27/13 Nelson the geometry of higher-order derivatives, estimating derivatives, the definition of the derivative (O/Z) 1.5, 1.7, 2.1 yes F13 10/11/13 Nelson differential equations, derivatives and antiderivatives of exponential and logarithmic functions (O/Z) 2.5, 2.6 yes F13 10/25/13 Nelson derivatives of trigonometric functions, product rule, quotient rule, chain rule (O/Z) 2.7, 3.1, 3.2 yes F13 11/01/13 Nelson derivatives of inverse functions, implicit differentiation (O/Z) 3.3, 3.4 yes F13 11/22/13 Nelson limits, L'Hopital's Rule, Intermediate Value Theorem (O/Z) 4.2, 4.8 yes F13 09/13/13A Ross (Quiz 1) domain, range, new functions from old, estimating the derivative at a point (O/Z) 1.1, 1.2, 1.5 yes F13 09/13/13B Ross (Quiz 1) domain, range, new functions from old, estimating the derivative at a point (O/Z) 1.1, 1.2, 1.5 yes F13 09/20/13A Ross (Quiz 2) geometry of first and second derivatives (O/Z) 1.6, 1.7 yes F13 09/20/13B Ross (Quiz 2) geometry of first and second derivatives (O/Z) 1.6, 1.7 yes F13 10/11/13A Ross (Quiz 4) derivatives of exponential and logarithmic functions (O/Z) 2.6 yes F13 10/11/13B Ross (Quiz 4) derivatives of exponential and logarithmic functions (O/Z) 2.6 yes F13 10/25/13A Ross (Quiz 5) product rule, quotient rule, chain rule, implicit differentiation (O/Z) 3.1, 3.2, 3.3 yes F13 10/25/13B Ross (Quiz 5) product rule, quotient rule, chain rule, implicit differentiation (O/Z) 3.1, 3.2, 3.3 yes F13 11/01/13A Ross (Quiz 6) logarithmic differentiation (O/Z) 3.5 yes F13 11/01/13B Ross (Quiz 6) logarithmic differentiation (O/Z) 3.5 yes F13 11/15/13 Ross (Quiz 7) continuity and differentiability in piecewise-defined functions, IVT, EVT, and use of the IVT to guarantee a polynomial has a root (O/Z) 4.8 yes F13 11/22/13 Ross (Quiz 8) related rates, Mean Value Theorem, definite integral as signed area (O/Z) 4.5, 4.9, 5.1 yes W13 01/18/13 Nelson functions, graphs, derivatives (O/Z) 1.1, 1.2, 1.3, 1.4, 1.6 yes W13 01/25/13 Nelson the geometry of derivatives, the speed limit law (O/Z) 1.6 yes W13 02/01/13 Nelson the geometry of higher order derivatives, the definition of the derivative, estimating derivatives (O/Z) 1.5, 1.7, 2.1 yes W13 02/15/13 Nelson differential equations, derivatives and antiderivatives of power, exponential, and logarithmic functions (O/Z) 2.5, 2.6 yes W13 03/01/13 Nelson derivatives of products, quotients, and composites (O/Z) 3.1, 3.2 yes W13 03/29/13 Nelson Intermediate Value Theorem, related rates, L'Hopital's Rule (O/Z) 4.2, 4.5, 4.8 yes F12 09/14/12 Buell domains and ranges of algebraic functions, shapes of graphs, types of functions (O/Z) 1.1, 1.2, 1.3, 1.4 yes F12 09/21/12 Buell geometry of derivatives and higher-order derivatives, limits (O/Z) 1.6, 1.7, 2.3 yes F12 09/28/12 Buell definition of the derivatives, derivatives of power functions (O/Z) 2.1, 2.2 yes F12 10/12/12 Buell differential equations, derivatives of exponentials, of logs, and of trigonometric functions (O/Z) 2.5, 2.6, 2.7 yes F12 10/22/12 Buell differential equations, derivatives of exponentials, of logs, of trigonometric functions, of products, and of quotients (O/Z) 2.5, 2.6, 2.7, 3.1 yes F12 11/02/12 Buell derivatives of composites and of inverse functions, implicit differentiation (O/Z) 3.2, 3.3, 3.4, 3.5 yes F12 11/26/12 Buell Intermediate Value Theorem, Mean Value Theorem, areas and integrals (O/Z) 4.8, 4.9, 5.1 yes F12 12/07/12 Buell limit definition of the definite integral, Fundamental Theorem of Calculus (O/Z) 5.3, 5.6, 5.7 yes F12 09/14/12 Coulombe functions and graphs (O/Z) 1.1, 1.2 yes F12 09/21/12 Coulombe geometry of derivatives (O/Z) 1.4, 1.6 yes F12 10/15/12 Coulombe derivatives of exponentials, of logs, and of trigonometric functions (O/Z) 2.6, 2.7 yes F12 10/26/12 Coulombe derivatives of products and of composites, implicit differentiation (O/Z) 3.1, 3.2, 3.3 yes F12 11/15/12 Coulombe related rates (O/Z) 4.5 yes F12 11/16/12 Coulombe Intermediate Value Theorem, Extreme Value Theorem (O/Z) 4.8, 4.9 yes F12 11/30/12 Coulombe areas, integrals, approximating sums (O/Z) 5.1, 5.6 yes F12 09/07/12 Haines functions (O/Z) 1.1 no F12 09/10/12 Haines odd and even functions (O/Z) 1.2 no F12 09/12/12 Haines elementary functions (O/Z) 1.3 no F12 09/14/12 Haines rate functions (O/Z) 1.4 no F12 09/17/12 Haines geometry of derivatives (O/Z) 1.6 no F12 09/19/12 Haines geometry of higher-order derivatives (O/Z) 1.7 no F12 09/21/12 Haines estimating derivatives (O/Z) 1.5 no F12 09/24/12 Haines defining the derivative (O/Z) 2.1 no F12 09/26/12 Haines derivatives of power functions (O/Z) 2.2 no F12 09/28/12 Haines limits (O/Z) 2.3 no F12 10/01/12 Haines derivative and antiderivative formulas (O/Z) 2.4 no F12 10/10/12 Haines derivatives and antiderivatives of exponentials (O/Z) 2.6 no F12 10/12/12 Haines derivatives and antiderivatives of trig functions (O/Z) 2.7 no F12 10/15/12 Haines derivatives of products (O/Z) 3.1 no F12 10/22/12 Haines derivatives of composites (O/Z) 3.2 no F12 10/24/12 Haines implicit differentiation (O/Z) 3.3 no F12 10/29/12 Haines derivatives of inverse functions (O/Z) 3.4 no F12 10/31/12 Haines miscellaneous derivatives (O/Z) 3.5 no F12 11/02/12 Haines limits and L'Hopital's Rule (O/Z) 4.2 no F12 11/05/12 Haines optimization (O/Z) 4.3 no F12 11/14/12 Haines related rates (O/Z) 4.5 no F12 11/16/12 Haines Intermediate Value Theorem (O/Z) 4.8 no F12 11/26/12 Haines very important stuff (O/Z) 3.14159... no F12 11/28/12 Haines areas and integrals (O/Z) 5.1 no F12 11/30/12 Haines the area function (O/Z) 5.2 no F12 12/03/12 Haines the Fundamental Theorem of Calculus (O/Z) 5.3 no F12 12/05/12 Haines approximating sums (O/Z) 5.6 no F12 09/18/12 Nelson functions, graphs, rate functions (O/Z) 1.1, 1.2, 1.3, 1.4 yes F12 09/26/12 Nelson geometry of derivatives and higher-order derivatives (O/Z) 1.6, 1.7 yes F12 10/15/12 Nelson differential equations, derivatives of exponetials, of logs, and of trigonometric functions (O/Z) 2.5, 2.6, 2.7 yes F12 10/31/12A Nelson derivatives of products, of quotients, and of composites, implicit differentiation (O/Z) 3.1, 3.2, 3.3, 3.4 yes F12 10/31/12B Nelson derivatives of products, of quotients, and of composites, implicit differentiation (O/Z) 3.1, 3.2, 3.3, 3.4 yes F12 11/30/12 Nelson Intermediate Value Theorem, Extreme Value Theorem, Mean Value Theorem (O/Z) 4.8, 4.9 yes W12 01/20/12 Buell domain, range, transformations, definition of derivative (O/Z) 1.1, 1.2, 1.3, 1.4 yes W12 01/27/12 Buell estimating derivatives, geometry of derivatives and higher-order derivatives (O/Z) 1.4, 1.5, 1.6, 1.7 yes W12 02/03/12 Buell definition of derivative, derivatives of powers (O/Z) 2.1, 2.2 yes W12 03/02/12 Buell derivatives of exponential, logarithmic, trigonometric, product, quotient, and composite functions (O/Z) 2.6, 2.7, 3.1, 3.2 yes W12 03/12/12 Buell implicit differentiation, logarithmic differentiation, L'Hopital's Rule (O/Z) 3.3, 3.4, 3.5, 4.2 yes W12 03/23/12 Buell related rates, Intermediate Value Theorem, Mean Value Theorem (O/Z) 4.5, 4.8, 4.9 yes W12 03/30/12 Buell Intermediate Value Theorem, areas, integrals (O/Z) 4.8, 4.9, 5.1, 5.2 yes W12 01/13/12 Greer functions and graphs (O/Z) 1.1, 1.2 yes W12 01/20/12 Greer elementary functions, rate functions (O/Z) 1.3, 1.4 yes W12 01/27/12 Greer geometry of derivatives, estimating derivatives (O/Z) 1.5, 1.6 yes W12 02/03/12 Greer defining the derivative, limits (O/Z) 2.1, 2.3 yes W12 02/17/12 Greer derivatives of exponential and trigonometric functions (O/Z) 2.6, 2.7 yes W12 03/02/12 Greer derivatives of products and composites (O/Z) 3.1, 3.2 yes W12 03/09/12 Greer inverse trigonometric functions, L'Hopital's Rule (O/Z) 3.4, 4.2 yes W12 03/23/12 Greer Mean Value Theorem, related rates (O/Z) 4.5, 4.9 yes W12 03/28/12 Greer areas, integrals, integral function (O/Z) 5.1, 5.2 yes F11 09/16/11A Coulombe functions and graphs (O/Z) 1.1, 1.2 yes F11 09/16/11B Coulombe functions and graphs (O/Z) 1.1, 1.2 yes F11 09/23/11A Coulombe geometry of derivatives and higher-order derivatives (O/Z) 1.6, 1.7 yes F11 09/23/11B Coulombe geometry of derivatives and higher-order derivatives (O/Z) 1.6, 1.7 yes F11 09/30/11A Coulombe defining the derivative, derivatives of power functions (O/Z) 2.1, 2.2 yes F11 09/30/11B Coulombe defining the derivative, derivatives of power functions (O/Z) 2.1, 2.2 yes F11 10/17/11A Coulombe derivatives of exponentials, logs, and trigonometric functions (O/Z) 2.6, 2.7 yes F11 10/17/11B Coulombe derivatives of exponentials, logs, and trigonometric functions (O/Z) 2.6, 2.7 yes F11 10/28/11A Coulombe product rule, quotient rule, chain rule (O/Z) 3.1, 3.2 yes F11 10/28/11B Coulombe product rule, quotient rule, chain rule (O/Z) 3.1, 3.2 yes F11 11/04/11A Coulombe implicit differentiation, logarithmic differentiation (O/Z) 3.3, 3.5 yes F11 11/04/11B Coulombe implicit differentiation, logarithmic differentiation (O/Z) 3.3, 3.5 yes F11 11/18/11 Coulombe Newton's Method (O/Z) 4.6 yes F11 12/02/11 Coulombe related rates, Intermediate Value Theorem, Extreme Value Theorem (O/Z) 4.5, 4.8 yes F11 09/16/11 Salerno functions and graphs (O/Z) 1.1, 1.2 yes F11 09/28/11 Salerno geometry of derivatives and higher-order derivatives, estimating derivatives (O/Z) 1.5, 1.6, 1.7 yes F11 10/17/11 Salerno differential equations, derivatives of powers, exponentials, logs, and trigonometric functions (O/Z) 2.2, 2.4, 2.5, 2.6, 2.7 yes F11 11/04/11 Salerno product rule, quotient rule, chain rule, implicit differentiation, L'Hopital's Rule (O/Z) 3.1, 3.2, 3.3, 4.2 yes F11 11/30/11 Salerno related rates, parametric equations (O/Z) 4.4, 4.5 no F11 09/09/11 Webster functions and domain (O/Z) 1.1 no F11 09/15/11 Webster polynomials (O/Z) 1.3 no F11 09/19/11 Webster geometry of derivatives (O/Z) 1.6 no F11 09/29/11 Webster limits (O/Z) 2.3 no F11 10/26/11 Webster derivative rules (O/Z) 2.2, 2.4, 2.6, 2.7, 3.1, 3.2 no W11 01/19/11 Greer functions and graphs (O/Z) 1.1, 1.2 yes W11 01/24/11 Greer elementary functions, rate functions (O/Z) 1.3, 1.4 yes W11 01/28/11 Greer geometry of derivatives, estimating derivatives (O/Z) 1.5, 1.6 yes W11 02/04/11 Greer estimating derivatives, derivative rules (O/Z) 1.5, 2.1, 2.2 yes W11 02/09/11 Greer limits, antiderivatives (O/Z) 2.3, 2.4 yes W11 02/18/11 Greer derivatives of trigonometric functions (O/Z) 2.7 yes W11 03/02/11 Greer product rule, chain rule (O/Z) 3.1, 3.2 yes W11 03/07/11 Greer implicit differentiation, inverse trigonometric functions (O/Z) 3.3, 3.4 yes W11 03/11/11 Greer miscellaneous derivatives (O/Z) 3.5 yes W11 03/16/11 Greer optimization, continuity (O/Z) 4.3, 4.8 yes W11 03/25/11 Greer infinity and L'Hopital's Rule (O/Z) 4.2 yes W11 03/30/11 Greer areas and integrals (O/Z) 5.1 yes W11 01/21/11 Salerno functions and graphs (O/Z) 1.1, 1.2 no W11 01/26/11 Salerno geometry of derivatives and higher-order derivatives (O/Z) 1.6, 1.7 no W11 01/31/11 Salerno estimating derivatives (O/Z) 1.5 no W11 02/04/11 Salerno derivatives of polynomials (O/Z) 2.2 no W11 02/18/11 Salerno derivatives of trigonometric functions (O/Z) 2.7 no W11 03/02/11 Salerno quotient rule, chain rule (O/Z) 3.1, 3.2 no W11 03/07/11 Salerno implicit differentiation, inverse functions (O/Z) 3.3, 3.4 no W11 03/11/11 Salerno miscellaneous derivatives, optimization (O/Z) 3.5, 4.3 no W11 03/25/11 Salerno L'Hopital's Rule (O/Z) 4.2 no W11 03/29/11 Salerno related rates, areas and integrals (O/Z) 4.5, 5.1 no W11 04/06/11 Salerno Fundamental Theorem of Calculus (O/Z) 5.3 no F10 09/15/10 Greer functions and graphs (O/Z) 1.1, 1.2 yes F10 09/20/10 Greer elementary functions, rate functions (O/Z) 1.3, 1.4 yes F10 09/24/10 Greer geometry of derivatives (O/Z) 1.6 yes F10 09/29/10 Greer estimating derivatives, defining the derivative (O/Z) 1.5, 2.1 yes F10 10/04/10 Greer derivatives of powers, limits (O/Z) 2.2, 2.3 yes F10 10/18/10 Greer derivatives of exponential, logarithmic, and trigonometric functions (O/Z) 2.6, 2.7 yes F10 10/27/10 Greer product rule, chain rule (O/Z) 3.1, 3.2 yes F10 11/01/10 Greer implicit differentiation (O/Z) 3.3 yes F10 11/05/10 Greer miscellaneous derivatives, L'Hopital's Rule (O/Z) 3.5, 4.2 yes F10 11/10/10 Greer optimization (O/Z) 4.3 yes F10 11/19/10 Greer related rates (O/Z) 4.5 yes F10 12/01/10 Greer Intermediate Value Theorem, statements and their converses (O/Z) 4.8 yes F10 12/06/10 Greer areas, integrals, the area function (O/Z) 5.1, 5.2 yes F10 12/10/10 Greer Fundamental Theorem of Calculus, approximating sums (O/Z) 5.3, 5.6 yes F10 09/13/10 Salerno functions and graphs (O/Z) 1.1, 1.2 no F10 09/16/10 Salerno elementary functions (O/Z) 1.3 no F10 09/20/10 Salerno amount functions and rate functions (O/Z) 1.4 no F10 09/23/10 Salerno geometry of derivatives and of higher-order derivatives (O/Z) 1.6, 1.7 no F10 09/27/10 Salerno estimating derivatives, defining the derivative (O/Z) 1.5, 2.1 no F10 09/30/10 Salerno estimating derivatives, defining the derivative (O/Z) 1.5, 2.1 no F10 10/06/10 Salerno limits (O/Z) 2.3 no F10 10/14/10 Salerno derivatives of exponentials (O/Z) 2.6 no F10 10/18/10 Salerno derivatives of logarithmic and trigonometric functions (O/Z) 2.6, 2.7 no F10 10/27/10 Salerno quotient rule, chain rule (O/Z) 3.1, 3.2 no F10 10/29/10 Salerno implicit differentiation, inverse functions (O/Z) 3.3, 3.4 no F10 11/03/10 Salerno derivatives of inverse trigonometric functions (O/Z) 3.4 no F10 11/05/10 Salerno miscellaneous derivatives (O/Z) 3.5 no F10 11/10/10 Salerno L'Hopital's Rule, optimization (O/Z) 4.2, 4.3 no F10 12/01/10 Salerno related rates (O/Z) 4.5 no F10 12/03/10 Salerno areas and integrals (O/Z) 5.1 no F10 09/15/10 Wong functions and graphs (O/Z) 1.1, 1.2, 1.3 yes F10 09/24/10 Wong amount functions, rate functions, geometry of derivatives and of higher-order derivatives, estimating derivatives (O/Z) 1.4, 1.5, 1.6, 1.7 yes F10 10/01/10 Wong defining the derivative, derivatives of powers, limits (O/Z) 2.1, 2.2, 2.3 yes F10 10/15/10 Wong derivatives of exponential, logarithmic, and trigonometric functions (O/Z) 2.6, 2.7 yes F10 10/27/10 Wong product rule, quotient rule, chain rule (O/Z) 3.1, 3.2 yes F10 11/03/10 Wong implicit differentiation, inverse functions and their derivatives (O/Z) 3.3, 3.4, 3.5 yes F10 11/10/10 Wong L'Hopital's Rule, optimization (O/Z) 4.2, 4.3 yes F10 11/19/10 Wong Intermediate Value Theorem, related rates (O/Z) 4.5, 4.8 yes F10 12/03/10 Wong areas, integrals, the area function (O/Z) 5.1, 5.2 yes F10 12/10/10 Wong approximating sums, Fundamental Theorem of Calculus (O/Z) 5.3, 5.6 yes W10 01/20/10 Greer functions and graphs (O/Z) 1.1, 1.2 yes W10 01/25/10 Greer elementary functions, rate functions (O/Z) 1.3, 1.4 yes W10 01/29/10 Greer geometry of derivatives and of higher-order derivatives (O/Z) 1.6, 1.7 yes W10 02/03/10 Greer estimating derivatives, the difference quotient (O/Z) 1.5, 2.1 yes W10 02/08/10 Greer defining the derivative, limits (O/Z) 2.2, 2.3 yes W10 02/26/10 Greer derivatives of exponentials and logarithms (O/Z) 2.6 yes W10 03/03/10 Greer product rule, trigonometric antiderivatives (O/Z) 2.7, 3.1 yes W10 03/08/10 Greer chain rule, implicit differentiation (O/Z) 3.2, 3.3 yes W10 03/12/10 Greer inverse trigonometric functions, miscellaneous antiderivatives (O/Z) 3.4, 3.5 yes W10 03/17/10 Greer L'Hopital's Rule, critical points (O/Z) 4.2, 4.3 yes W10 03/26/10 Greer bisection method, differentiability, continuity (O/Z) 4.8, 4.9 yes W10 04/02/10 Greer related rates, the definite integral (O/Z) 4.5, 5.1 yes W10 04/07/10 Greer the area function (O/Z) 5.2 yes W10 04/09/10 Greer approximating sums, working with sums (O/Z) 5.6, 5.7 yes F09 09/14/09 Haines even and odd functions (O/Z) 1.2 no F09 09/16/09 Haines graphs and domain (O/Z) 1.3 no F09 09/18/09 Haines derivative graphs (O/Z) 1.4 no F09 09/21/09 Haines the geometry of derivatives (O/Z) 1.6 no F09 09/23/09 Haines the geometry of higher-order derivatives (O/Z) 1.7 no F09 09/25/09 Haines estimating derivatives numerically (O/Z) 1.5 no F09 09/28/09 Haines limit definition of the derivative (O/Z) 2.1 no F09 09/30/09 Haines limit definition of the derivative, derivative of power functions (O/Z) 2.2 no F09 10/02/09 Haines limits and continuity (O/Z) 2.3 no F09 10/05/09 Haines derivative formulas, stationary points, tangent lines (O/Z) 2.4 no F09 10/14/09 Haines derivatives of exponentials (O/Z) 2.6 no F09 10/16/09 Haines derivative of trig functions (O/Z) 2.7 no F09 10/19/09 Haines product rule (O/Z) 3.1 no F09 10/26/09 Haines chain rule (O/Z) 3.2 no F09 10/28/09 Haines implicit differentiation (O/Z) 3.3 no F09 10/30/09 Haines inverse trig derivatives (O/Z) 3.4 no F09 11/02/09 Haines miscellaneous derivatives (O/Z) 3.5 no F09 11/04/09 Haines limits and L'Hopital's Rule (O/Z) 4.2 no F09 11/06/09 Haines optimization (O/Z) 4.3 no F09 11/09/09 Haines optimization (O/Z) 4.3 no F09 11/18/09 Haines related rates (O/Z) 4.5 no F09 11/20/09 Haines Intermediate Value Theorem, Extreme Value Theorem (O/Z) 4.8 no F09 12/02/09 Haines areas and integrals (O/Z) 5.1 no F09 12/04/09 Haines the area function (O/Z) 5.2 no F09 12/07/09 Haines approximating sums (O/Z) 5.6 no F09 12/09/09 Haines Fundamental Theorem of Calculus (O/Z) 5.3 no F09 09/11/09 Webster functions and domain (O/Z) 1.1 no F09 09/14/09 Webster concavity (O/Z) 1.2 no F09 09/16/09 Webster even and odd functions (O/Z) 1.2 no F09 09/17/09 Webster polynomials (O/Z) 1.3 no F09 09/18/09 Webster derivatives (O/Z) 1.4 no F09 09/21/09 Webster the geometry of derivatives (O/Z) 1.6 no F09 09/23/09 Webster the geometry of higher-order derivatives (O/Z) 1.7 no F09 09/24/09 Webster the geometry of derivatives (O/Z) 1.6 no F09 09/24/09 Webster the geometry of derivatives (O/Z) 1.6 no F09 09/28/09 Webster limit definition of the derivative (O/Z) 2.1 no F09 09/28/09 Webster limit definition of the derivative (O/Z) 2.1 no F09 10/01/09 Webster limits (O/Z) 2.3 no F09 10/01/09 Webster limits (O/Z) 2.3 no F09 10/02/09 Webster limits (O/Z) 2.3 no F09 10/02/09 Webster limits (O/Z) 2.3 no F09 10/05/09 Webster setting up optimization word problems (O/Z) 2.4 no F09 10/05/09 Webster setting up optimization word problems (O/Z) 2.4 no F09 10/14/09 Webster derivatives of exponentials and logs (O/Z) 2.6 no F09 10/14/09 Webster derivatives of exponentials and logs (O/Z) 2.6 no F09 10/15/09 Webster trigonometric limits (O/Z) 2.7 no F09 10/16/09 Webster quotient rule (O/Z) 3.1 no F09 10/19/09 Webster derivatives of exponentials, differential equations (O/Z) 2.6 no F09 10/26/09 Webster chain rule (O/Z) 3.2 no F09 10/28/09 Webster implicit differentiation (O/Z) 3.3 no F09 10/30/09 Webster derivatives of inverse trig functions (O/Z) 3.4 no F09 11/02/09 Webster miscellaneous derivatives (O/Z) 3.5 no F09 11/04/09 Webster limits and L'Hopital's Rule (O/Z) 4.2 no F09 11/05/09 Webster optimization (O/Z) 4.3 no F09 11/06/09 Webster optimization (O/Z) 4.3 no F09 11/11/09 Webster Newton's Method (O/Z) 4.6 no F09 11/18/09 Webster related rates (O/Z) 4.5 no W09 01/16/09 Moras functions, graphs, slope (O/Z) 1.1, 1.2 no W09 01/23/09 Moras derivatives, graphs, inflection points (O/Z) 1.4, 1.6, 1.7 no W09 02/09/09 Moras distance formula, inequalities (O/Z) Appendix B no W09 03/06/09 Moras derivative rules, antiderivative rules, differential equations (O/Z) 2.4, 2.5, 2.6, 2.7 no W09 01/23/09 Salomone functions, graphs, numerical derivatives, graphical derivatives (O/Z) 1.1, 1.2, 1.5, 1.6 yes W09 02/02/09 Salomone derivative rules, limits (O/Z) 2.2, 2.3, 2.6, 2.7 yes W09 02/06/09 Salomone local extrema, inflection points, differential equations (O/Z) 2.4, 2.5 yes W09 03/13/09 Salomone product rule, chain rule, implicit differentiation, L'Hopital's Rule, optimization (O/Z) 3.1, 3.2, 3.3, 4.2, 4.3 yes W09 03/27/09 Salomone optimization, Intermediate Value Theorem, Mean Value Theorem (O/Z) 4.3, 4.8, 4.9 yes F08 09/10/08 Balcomb functions, graphs (O/Z) 1.1, 1.2, 1.3 no F08 09/17/08 Balcomb rate functions, geometry of derivatives (O/Z) 1.4, 1.6 no F08 09/24/08 Balcomb estimating deriviatives, defining the derivative, power rule (O/Z) 1.5, 2.1, 2.2 no F08 10/01/08 Balcomb deriviative and antiderivative formulae (O/Z) 2.4 no F08 10/22/08 Balcomb derivatives of exponential, logarithmic and trigonometric functions, chain rule (O/Z) 2.6, 2.7, 3.2 no F08 10/24/08 Balcomb derivatives of inverse functions (O/Z) 3.4 no F08 10/31/08 Balcomb miscellaneous derivatives and antiderivatives, L'Hopital's Rule (O/Z) 3.5, 4.2 no F08 09/05/08 Moras functions, graphs (O/Z) 1.1, 1.2 no F08 09/12/08 Moras rational functions, derivatives (O/Z) 1.3, 1.4 no F08 09/19/08 Moras geometry of derivatives (O/Z) 1.6 no F08 09/26/08 Moras limits, definition of the derivative, continuity (O/Z) 2.2, 2.3 no F08 10/10/08 Moras derivatives and antiderivatives of exponential and trigonometric functions (O/Z) 2.6, 2.7 no F08 10/24/08 Moras chain rule, implicit differentiation (O/Z) 3.2, 3.3 no F08 10/31/08 Moras inverse functions, miscellaneous antiderivatives, L'Hopital's Rule (O/Z) 3.4, 3.5, 4.2 no F08 11/14/08 Moras related rates, Extreme Value Theorem (O/Z) 4.5, 4.8 no F08 11/21/08 Moras areas and integrals, the area function, Fundamental Theorem of Calculus (O/Z) 5.1, 5.2, 5.3 no F08 09/11/08 Salomone functions, graphs, polynomials, rate functions (O/Z) 1.1, 1.2, 1.3, 1.4 yes F08 09/18/08 Salomone estimating derivatives, geometry of derivatives (O/Z) 1.5, 1.6, 1.7 yes F08 09/25/08 Salomone limits, definition of the derivative, estimating derivatives (O/Z) 1.5, 2.1, 2.3 yes F08 10/01/08 Salomone derivative and antiderivative rules (O/Z) 2.4, 2.5 yes F08 10/09/08 Salomone derivatives of exponentials, logs, and trig functions (O/Z) 2.6, 2.7 yes F08 10/23/08 Salomone product rule, quotient rule, chain rule, implicit differentiation (O/Z) 3.1, 3.2, 3.3 yes F08 10/31/08 Salomone derivatives of inverse functions, L'Hopital's Rule (O/Z) 3.4, 4.2 yes F08 11/05/08 Salomone optimization (O/Z) 4.3 yes F08 11/14/08 Salomone related rates, Intermediate Value Theorem, Mean Value Theorem (O/Z) 4.5, 4.8, 4.9 yes F08 11/20/08 Salomone areas and integrals, the area function (O/Z) 5.1, 5.2 yes F08 12/04/08 Salomone Fundamental Theorem of Calculus, approximating sums (O/Z) 5.3, 5.6 yes W08 01/14/08 Shulman functions, graphs, polynomials (O/Z) 1.1, 1.2, 1.3 yes W08 01/28/08 Shulman geometry of first and second derivatives, limit definition of derivative (O/Z) 1.6, 1.7, 2.1 yes W08 03/03/08 Shulman derivative rules for products, quotients, composites, exponentials, trig functions (O/Z) 2.6, 2.7, 3.1, 3.2 yes W08 02/13/08 Shulman antiderivatives, differential equations (O/Z) 2.4, 2.5 yes W08 03/19/08 Shulman limits involving infinity, L'Hopital's Rule (O/Z) 4.2 yes W08 03/31/08 Shulman areas, integrals, area function, Fundamental Theorem (O/Z) 5.1-5.3 yes F07 09/10/07 Greer functions (O/Z) 1.1 yes F07 09/14/07 Greer graphs, exponential and power functions (O/Z) 1.2, 1.3 yes F07 09/19/07 Greer amount functions, rate functions, geometry of derivatives (O/Z) 1.4, 1.6 yes F07 09/24/07 Greer second derivative, estimating derivatives numerically (O/Z) 1.5, 1.7 yes F07 09/28/07 Greer estimating derivatives numerically, defining the derivative (O/Z) 1.7, 2.1 yes F07 10/03/07 Greer limits, antiderivatives (O/Z) 2.3, 2.4 yes F07 10/12/07 Greer solving differential equations, the number e (O/Z) 2.5, 2.6 yes F07 10/22/07 Greer derivatives of trig functions, product rule (O/Z) 2.7, 3.1 yes F07 10/26/07 Greer chain rule, implicit differentiation (O/Z) 3.2, 3.3 yes F07 10/31/07 Greer inverse functions and their derivatives, antiderivatives (O/Z) 3.4, 3.5 yes F07 11/05/07 Greer L'Hopital's Rule, absolute value function (O/Z) 4.2 yes F07 11/16/07 Greer related rates (O/Z) 4.5 yes F07 11/28/07 Greer Extreme Value Theorem, Mean Value Theorem (O/Z) 4.8, 4.9 yes F07 12/03/07 Greer integrals, area functions (O/Z) 5.1, 5.2 yes F07 12/07/07 Greer the Fundamental Theorem, approximating sums (O/Z) 5.3, 5.6 yes F07 09/10/07 Shor functions, graphs (O/Z) 1.1, 1.2 yes F07 09/14/07 Shor rational and periodic functions (O/Z) 1.3 yes F07 09/19/07 Shor derivatives, tangent lines (O/Z) 1.4 yes F07 09/24/07 Shor geometry of first and second derivatives (O/Z) 1.6, 1.7 yes F07 09/28/07 Shor defining the derivative, derivatives of powers (O/Z) 2.1, 2.2 yes F07 10/03/07 Shor limits, antiderivatives (O/Z) 2.3, 2.4 yes F07 10/12/07 Shor derivatives of exponentials (O/Z) 2.6 yes F07 10/22/07 Shor derivatives of log and trig functions, product rule, quotient rule (O/Z) 2.6, 2.7, 3.1 yes F07 10/26/07 Shor chain rule, implicit differentiation (O/Z) 3.4 yes F07 10/31/07 Shor inverse functions and their derivatives (O/Z) 3.2, 3.3 yes F07 11/07/07 Shor L'Hopital's Rule, optimization (O/Z) 4.2, 4.3 yes F07 11/16/07 Shor related rates (O/Z) 4.5 yes F07 11/29/07 Shor Mean Value Theorem, Intermediate Value Theorem (O/Z) 4.8, 4.9 yes F07 12/03/07 Shor integrals, area functions (O/Z) 5.1, 5.2 yes F07 12/07/07 Shor the Fundamental Theorem, approximating sums (O/Z) 5.3, 5.6 yes F06 09/22/06 Jayawant derivatives and their graphs (O/Z) 1.4, 1.6, 1.7 yes F06 09/29/06 Jayawant definition of derivative, derivatives of polynomials (O/Z) 2.1, 2.2 yes F06 10/27/06 Jayawant derivatives of products, quotients, composites, logs, exponentials, and trig functions (O/Z) 2.6, 2.7, 3.1, 3.2 yes F06 12/01/06 Jayawant related rates, Mean Value, Theorem, Intermediate Value Theorem, Extreme Value Theorem (O/Z) 2.6, 2.7, 3.1, 3.2 yes F06 09/11/06 Shor functions, graphs (O/Z) 1.1, 1.2 yes F06 09/18/06 Shor derivatives, tangent lines (O/Z) 1.4, 1.5 yes F06 09/25/06 Shor geometry of derivatives, defining the derivative (O/Z) 1.6, 1.7, 2.1 yes F06 09/29/06 Shor derivatives of polynomials, limits (O/Z) 2.2, 2.3 yes F06 10/16/06 Shor derivatives of products, quotients, exponentials, logs, and trig functions (O/Z) 2.6, 2.7, 3.1 yes F06 10/30/06 Shor chain rule, implicit differentiation, inverse functions and their derivatives (O/Z) 3.2-3.4 yes F06 11/06/06 Shor L'Hopital's Rule, optimization (O/Z) 4.2, 4.3 yes F06 11/27/06 Shor related rates, Mean Value Theorem (O/Z) 4.5, 4.9 yes F05 09/09/05 Greer functions, graphs (O/Z) 1.1, 1.2 yes F05 09/14/05 Greer types and properties of functions (O/Z) 1.3 yes F05 09/19/05 Greer geometry of derivatives, higher-order derivatives (O/Z) 1.6, 1.7 yes F05 09/23/05 Greer defining the derivative, derivatives of powers (O/Z) 2.1, 2.2 yes F05 09/28/05 Greer limits, antiderivatives (O/Z) 2.3, 2.4 yes F05 10/03/05 Greer differential equations, derivatives of exponentials (O/Z) 2.5, 2.6 yes F05 10/14/05 Greer chain rule (O/Z) 3.2 yes F05 10/26/05 Greer implicit differentiation, inverse trig functions (O/Z) 3.3, 3.4 yes F05 10/31/05 Greer antiderivatives, slope fields (O/Z) 3.5, 4.1 yes F05 11/04/05 Greer limits involving infinity, optimization (O/Z) 4.2, 4.3 yes F05 11/09/05 Greer Newton's Method, optimization (O/Z) 4.3, 4.6 yes F05 11/18/05 Greer Extreme Value Theorem, Intermediate Value Theorem (O/Z) 4.8 yes F05 11/30/05 Greer Mean Value Theorem, areas and integrals (O/Z) 4.9, 5.1 yes F05 12/05/05 Greer the area function, the Fundamental Theorem (O/Z) 5.2, 5.3 yes F05 09/12/05 Shor functions, graphs, types and properties of functions (O/Z) 1.1, 1.2, 1.3 yes F05 09/19/05 Shor amount and rate functions, geometry of derivatives (O/Z) 2.1, 2.2 yes F05 09/26/05 Shor derivatives of powers, limits (O/Z) 1.4, 1.6 yes F05 10/03/05 Shor differential equations, motion, antiderivatives, trig (O/Z) 2.4, 2.5, 2.7 yes F05 10/17/05 Shor chain rule, implicit differentiation (O/Z) 3.2, 3.3 yes F05 10/27/05 Shor inverses, complicated derivatives, differential equations (O/Z) 3.4, 3.5, 4.1 yes F05 11/02/05 Shor slope fields, L'Hopital's Rule, limits involving infinity (O/Z) 4.1, 4.2 yes F05 11/07/05 Shor Newton's Method, optimization (O/Z) 4.3, 4.6 yes F05 11/17/05 Shor Taylor polynomials (O/Z) 4.7 yes F05 11/30/05 Shor Intermediate Value Theorem, areas and integrals (O/Z) 4.8, 5.1 yes F05 12/05/05 Shor the area function, the Fundamental Theorem (O/Z) 5.2, 5.3 yes F04 09/13/04 Greer continuity (H-H) 1.7 yes F04 09/20/04 Greer distance graphs, limits (H-H) 2.1, 2.2 yes F04 09/24/04 Greer numerical derivatives, derivatives on graphs (H-H) 2.3, 2.4 yes F04 09/29/04 Greer interpretation of derivatives, second derivatives (H-H) 2.5, 2.6 yes F04 10/04/04 Greer differentiability, derivatives of powers (H-H) 2.7, 3.1 yes F04 10/18/04 Greer the chain rule, derivatives of trig functions (H-H) 3.4, 3.5 yes F04 10/27/04 Greer applications of the chain rule (H-H) 3.6 yes F04 11/01/04 Greer implicit differentiation, local linearization (H-H) 3.7, 3.9 yes F04 11/05/04 Greer finding maxima, minima, inflection points (H-H) 4.1 yes F04 11/10/04 Greer finding local and global extrema (H-H) 4.3 yes F04 11/19/04 Greer Riemann sums, the definite integral (H-H) 5.1, 5.2 yes F04 12/01/04 Greer interpretations of the definite integral (H-H) 5.3 yes F04 12/06/04 Greer theorems about definite integrals, graphical antiderivatives (H-H) 5.4, 6.1 yes F04 09/17/04 Shulman average and instantaneous rates of change (H-H) 2.1, 2.3 no F04 09/24/04 Shulman computing and sketching derivatives (H-H) 2.3, 2.4 no F04 10/01/04 Shulman second derivatives, continuity, differentiability, derivatives of power functions (H-H) 2.6, 2.7, 3.1 no F04 10/15/04 Shulman the chain rule, derivatives of trig functions (H-H) 3.4, 3.5 no F04 10/29/04 Shulman implicit differentiation, local linearization, L'Hopital's Rule (H-H) 3.7, 3.9, 3.10 no F04 11/05/04 Shulman finding maxima, minima, inflection points (H-H) 4.1, 4.3 no F04 11/19/04 Shulman Riemann sums, the definite integral, average value (H-H) 5.1, 5.2, 5.3 no F04 12/03/04 Shulman definite integrals and antiderivatives (H-H) 5.3, 5.4, 6.1, 6.2 no F04 09/15/04 Wong average and instantaneous rates of change (H-H) 2.1, 2.3 yes F04 09/22/04 Wong limits, the derivative function (H-H) 2.2, 2.4 yes F04 09/29/04 Wong interpretation of derivatives, second derivatives (H-H) 2.5, 2.6 yes F04 10/06/04 Wong derivatives of powers, exponentials, products (H-H) 3.1, 3.2, 3.3 yes F04 10/15/04 Wong the chain rule, derivatives of trig functions (H-H) 3.4, 3.5 yes F04 10/27/04 Wong implicit differentiation (H-H) 3.7 yes F04 11/03/04 Wong L'Hopital's Rule, finding maxima, minima, inflection points (H-H) 3.10, 4.1 yes F04 11/10/04 Wong optimization (H-H) 4.3, 4.5 yes F04 12/01/04 Wong distance, the definite integral and its interpretations (H-H) 5.1-5.3 yes F04 12/08/04 Wong Fundamental Theorem of Calculus, antiderivatives analytically (H-H) 5.4, 6.1, 6.2 yes W04 01/14/04 Coulombe continuity, domain and range (H-H) 1.7 yes W04 01/16/04 Coulombe average velocity (H-H) 2.1 yes W04 01/23/04 Coulombe limits (H-H) 2.2 yes W04 01/26/04 Coulombe the derivative at a point (H-H) 2.3 yes W04 01/28/04 Coulombe the derivative function (H-H) 2.4 yes W04 01/30/04 Coulombe the second derivative (H-H) 2.6 yes W04 02/04/04 Coulombe continuity, differentiability, derivatives of power functions (H-H) 2.7, 3.1 yes W04 02/06/04 Coulombe derivatives of exponential functions (H-H) 3.2 yes W04 02/09/04 Coulombe product rule, quotient rule (H-H) 3.3 yes W04 02/25/04 Coulombe derivatives of trigonometric functions (H-H) 3.5 yes W04 02/27/04 Coulombe applications of the chain rule (H-H) 3.6 yes W04 03/03/04 Coulombe implicit differentation, linear approximation (H-H) 3.7, 3.9 yes W04 03/05/04 Coulombe related rates, L'Hopital's Rule (H-H) 3.6, 3.10 yes W04 03/10/04 Coulombe critical points, local extrema, inflection points (H-H) 4.1 yes W04 03/12/04 Coulombe global extrema (H-H) 4.3 yes W04 03/17/04 Coulombe optimization (H-H) 4.5 yes W04 03/24/04 Coulombe left-hand and right-hand sums (H-H) 5.1 yes W04 03/29/04 Coulombe the definite integral (H-H) 5.2 yes W04 03/31/04 Coulombe total change and average value (H-H) 5.3 yes W04 04/02/04 Coulombe Fundamental Theorem of Calculus, integral properties (H-H) 5.4 yes W04 04/05/04 Coulombe constructing antiderivatives graphically (H-H) 6.1 yes W04 04/07/04 Coulombe constructing anitderivatives analytically (H-H) 6.2 yes F03 09/08/03 Greer continuity (H-H) 1.7 yes F03 09/12/03 Greer distance graphs, limits (H-H) 2.1, 2.2 yes F03 09/17/03 Greer average and instantaneous rates of change, computing f ' algebraically (H-H) 2.3, 2.4 yes F03 09/22/03 Greer the second derivative, interpreting derivatives (H-H) 2.5, 2.6 yes F03 10/03/03 Greer the product rule and the quotient rule (H-H) 3.3 yes F03 10/08/03 Greer the chain rule, derivatives of trig functions (H-H) 3.4, 3.5 yes F03 10/13/03 Greer derivatives of inverse functions, implicit differentiation (H-H) 3.6, 3.7 yes F03 10/22/03 Greer L'Hopital's Rule, First Derivative Test for local extrema (H-H) 3.10, 4.1 yes F03 10/31/03 Greer optimization (H-H) 4.3, 4.5 yes F03 11/05/03 Greer Extreme Value Theorem, estimating area by Riemann sums (H-H) 4.7, 5.1 yes F03 11/10/03 Greer the definite integral and its interpretation (H-H) 5.2, 5.3 yes F03 11/21/03 Greer the Fundamental Theorem, finding antiderivatives (H-H) 5.4, 6.1, 6.2 yes F03 12/03/03 Greer differential equations, the second Fundamental Theorem (H-H) 6.3, 6.4 yes F03 09/04/03 Haines average rates of change (H-H) 2.1 no F03 09/05/03 Haines evaluating limits (H-H) 2.2 no F03 09/08/03 Haines evaluating limits (H-H) 2.2 no F03 09/10/03 Haines numerical estimation of derivatives (H-H) 2.3 no F03 09/11/03 Haines numerical estimation of derivatives (H-H) 2.3 no F03 09/12/03 Haines numerical estimation of derivatives (H-H) 2.3 no F03 09/15/03 Haines practical interpretation of the derivative (H-H) 2.5 no F03 09/17/03 Haines increasing/decreasing, concavity in graphs (H-H) 2.6 no F03 09/18/03 Haines differentiability and continuity (H-H) 2.7 no F03 09/19/03 Haines the power rule for derivatives (H-H) 3.1 no F03 09/22/03 Haines the power rule for derivatives (H-H) 3.1 no F03 09/24/03 Haines derivatives of power functions and exponential functions (H-H) 3.1, 3.2 no F03 10/01/03 Haines product rule, quotient rule (H-H) 3.3 no F03 10/02/03 Haines chain rule (H-H) 3.4 no F03 10/03/03 Haines derivatives of trig functions (and chain rule) (H-H) 3.5 no F03 10/06/03 Haines derivatives of logs and inverse trig functions (and chain rule) (H-H) 3.6 no F03 10/08/03 Haines implicit differentiation (H-H) 3.7 no F03 10/09/03 Haines parametric equations (H-H) 3.8 no F03 10/10/03 Haines local linearization (H-H) 3.9 no F03 10/13/03 Haines L'Hopital's Rule (H-H) 3.10 no F03 10/20/03 Haines critical points, local maxima and local minima (H-H) 4.1 no F03 10/22/03 Haines critical points, local maxima and local minima (H-H) 4.1 no F03 10/29/03 Haines optimization (H-H) 4.5 no F03 10/30/03 Haines hyperbolic functions (H-H) 4.6 no F03 10/31/03 Haines continuity and differentiability (H-H) 4.7 no F03 11/03/03 Haines estimating distance using Riemann sums (H-H) 5.1 no F03 11/05/03 Haines numerical approximation of definite integrals (H-H) 5.2 no F03 11/06/03 Haines interpretations of the definite integral (H-H) 5.3 no F03 11/07/03 Haines theorems about the definite integral (H-H) 5.4 no F03 11/10/03 Haines constructing antiderivatives numerically (H-H) 6.1 no F03 11/12/03 Haines constructing antiderivatives numerically (H-H) 6.1 no F03 11/20/03 Haines constructing antiderivatives analytically (H-H) 6.2 no F03 11/21/03 Haines differential equations (H-H) 6.3 no F03 12/01/03 Haines differential equations (H-H) 6.3 no F03 12/03/03 Haines the second Fundamental Theorem of Calculus (H-H) 6.4 no F03 12/04/03 Haines the second Fundamental Theorem of Calculus (H-H) 6.4 no F02 09/11/02 Johnson evaluating limits (H-H) 2.2 yes F02 09/18/02B Johnson definition of derivative, sketching derivative graphs (H-H) 2.3, 2.4 yes F02 09/18/02D Johnson definition of derivative, sketching derivative graphs (H-H) 2.3, 2.4 yes F02 09/27/02B Johnson continuity and differentiability, power rule (H-H) 2.7, 3.1 yes F02 09/27/02D Johnson continuity and differentiability, power rule (H-H) 2.7, 3.1 yes F02 10/04/02B Johnson derivatives of powers, exponentials, products, quotients (H-H) 3.2, 3.3 yes F02 10/04/02D Johnson derivatives of powers, exponentials, products, quotients (H-H) 3.2, 3.3 yes F02 10/25/02B Johnson Chain Rule, derivatives of trig functions, logs (H-H) 3.4, 3.5, 3.6 yes F02 10/25/02D Johnson Chain Rule, derivatives of trig functions, logs (H-H) 3.4, 3.5, 3.6 yes F02 11/08/02 Johnson L'Hopital's Rule, implicit differentiation, parametric equations (H-H) 3.7, 3.8, 3.10 yes F02 12/04/02B Johnson indefinite integrals (H-H) 6.2 yes F02 12/04/02D Johnson indefinite integrals (H-H) 6.2 yes W02 01/18/02A Towne linear, exponential, trigonometric, and logarithmic functions (H-H) 1.1, 1.2, 1.3, 1.4, 1.5 yes W02 01/18/02B Towne linear, exponential, trigonometric, and logarithmic functions (H-H) 1.1, 1.2, 1.3, 1.4, 1.5 yes W02 01/25/02A Towne definition of derivative, reading derivative graphs (H-H) 2.1, 2.3, 2.4 yes W02 01/25/02B Towne definition of derivative, reading derivative graphs (H-H) 2.1, 2.3, 2.4 yes W02 02/01/02A Towne sketching and interpreting derivatives, second derivatives (H-H) 2.4, 2.5, 2.6 yes W02 02/01/02B Towne sketching and interpreting derivatives, second derivatives (H-H) 2.4, 2.5, 2.6 yes W02 02/08/02A Towne rules of differentiation, increasing versus decreasing, concavity (H-H) 3.1, 3.2, 3.3 yes W02 02/08/02B Towne rules of differentiation, increasing versus decreasing, concavity (H-H) 3.1, 3.2, 3.3 yes W02 03/01/02A Towne rules of differentiation, related rates (H-H) 3.4, 3.5, 3.6 yes W02 03/01/02B Towne rules of differentiation, related rates (H-H) 3.4, 3.5, 3.6 yes W02 03/08/02A Towne evaluating limits, local linearization, maxima and minima (H-H) 3.9, 3.10, 4,1 yes W02 03/08/02B Towne evaluating limits, local linearization, maxima and minima (H-H) 3.9, 3.10, 4,1 yes W02 03/15/02A Towne families of curves, optimization (H-H) 4.2, 4.3, 4.5 yes W02 03/15/02B Towne families of curves, optimization (H-H) 4.2, 4.3, 4.5 yes W02 03/29/02A Towne Riemann sums, evaluating and using integrals (H-H) 5.1, 5.2, 5.3, 6.1, 6.2 yes W02 03/29/02B Towne Riemann sums, evaluating and using integrals (H-H) 5.1, 5.2, 5.3, 6.1, 6.2 yes