TEST 1

Math 205 10/10/11

Name: Key "

Read all of the following information before starting the exam:

- · Show all work, clearly and in order if you want to get full credit (matrices can be reduced into RREF with calculator without showing steps). I reserve the right to take off points if I cannot see how you arrived at your answer (even if your final answer is correct).
- · Circle or otherwise indicate your final answers.
- · Please keep your written answers brief; be clear and to the point. I will take points off for rambling and for incorrect or irrelevant statements. Put a smiley face next to your name for one point.
- This test has 8 problems and is worth 100 points, It is your responsibility to make sure that you have all of the pages!
- · Good luck!

1. (13 points) Consider the system of equations:

$$x + 6y + 2z - 5u - 2v = -4$$

 $2z - 8u - v = 3$
 $v = 7$

a. (5 pts) Write the system as a matrix equation

$$\begin{bmatrix} 1 & 6 & 2 & -5 & -2 \\ 0 & 0 & 2 & -8 & -1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ u \\ Y \end{bmatrix} = \begin{bmatrix} -4 \\ 3 \\ 7 \end{bmatrix}$$

b. (8 pts) Solve the system and use vector parameter form for your solution.

2. (10 points) Consider the vectors $\vec{u}, \vec{v}, \vec{w}$ as labelled on the graph.

a. (5 pts) Sketch and label $2\vec{u}$ and $\vec{v} + \vec{w}$.

b. (5 pts) Describe, geometrically and in words, the space $Span\{\vec{u}, \vec{v}, \vec{w}\}$.

Span
$$\{\vec{u}, \vec{v}, \vec{w}\} = \mathbb{R}^2$$
, plane
all linear combinations of $\{\vec{u}, \vec{v}, \vec{w}\}$
Span $\{\vec{u}, \vec{v}, \vec{w}\} = \{c, \vec{u} + c_2\vec{v} + c_3\vec{w} \mid c_1, c_2, c_3 \in \mathbb{R}^3\}$

(20 points)

Give the definition of what it means for the set of vectors $S = \{\vec{x_1}, \vec{x_2}, \dots \vec{x_p}\}$ to be linearly independent. (Don't tell me the method you would use to SHOW they are linear independent. I am looking for the definition.)

If $C_1 \vec{x_1} + C_2 \vec{x_2} + ... + C_p \vec{x_p} = 0$ has only the trivial solution, C=Cz=Cz== = cp=0 then 5 is a set of linearly independent vectors.

Now, suppose $S = \{\vec{x_1}, \vec{x_2}, \vec{x_3}, \vec{x_4}\}$ be the columns vectors of $A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 4 & -1 & 3 \\ 1 & -2 & 1 & 1 \\ -2 & -1 & 1 & -3 \end{bmatrix}$ b. (5 pts) Find all solutions of $A\vec{x} = \vec{0}$. Hint: $RREF(A) = \begin{bmatrix} 1 & 0 & 0 & 4/3 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1/3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ $C_1 = -\frac{4}{3}$ $C_2 = 0$ $C_3 = \frac{1}{3}C_4$ C_4 C_4 C_4 C_4 C_4 C_4 C_4 C_4 C_7 C_8 C_9 C_9

Express $\vec{0}$ as a linear combination of the columns of A where the scalar associated

with \vec{x}_3 is one or explain why this is impossible. From b, let $C_4 = 3$ then $\vec{x} = \begin{bmatrix} -4 \\ 0 \end{bmatrix}$ solves $A\vec{x} = \vec{0}$. $50. -4\vec{x}. + \vec{x}_2 + 3\vec{x}_4 = \vec{0}$

Express \vec{x}_3 as a linear combination of the other columns or explain why this is d. (5 pts) impossible. from C.

$$\vec{X}_3 = 4\vec{x}_1 - 3\vec{x}_4$$

Given some vector $b \in \mathbb{R}^4$, can you always solve $A\vec{x} = \vec{b}$? Explain. e. (3 pts)

By Thm 4., since A doesn't have a prot in every row we cannot always solve Ax = b for any b. 4. (12 points) One way to see if a linear transformation $T(\vec{x}) = A\vec{x}$ is one-to-one is to check which vectors \vec{x} in the domain are mapped to the zero vector, $\vec{0}$ (ie. Find all \vec{x} such that $T(\vec{x}) = A\vec{x}$) = $\vec{0}$.) We know $\vec{x} = \vec{0}$ will work, but there may be more in which case T is not one-to-one.

Find an example of a non-trivial (not the zero matrix) linear transformation that maps a non-zero vector to the zero vector. Give a matrix, A, and a vector, \vec{x} , and show how A maps

your chosen \vec{x} to the zero vector.

$$A = \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix} \quad \vec{x} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
Then
$$A \vec{x} = \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 6 \\ 0 \end{bmatrix}$$

A linear transformation T is one-to-one if and only if the ONLY vector that T maps to $\vec{0}$ is $\vec{x} = \vec{0}$ (ie. only the trivial solution). Explain why if $T(\vec{x}) = 0$ has a unique solution, $\vec{x} = \vec{0}$, then T is one-to-one.

If $T(\vec{x})=0$ then $A\vec{x}=\vec{0}$. If $\vec{x}=0$ is the only solution then A has a pivot in every column and no free variables. However, if A has a prot in every column then T(x)=Ax is one-to-one.

(15 points) T is a linear transformation. T: R² → R³.

a. (8 pts) Can T be one-to-one? Can T be onto? Explain.

b.
$$(7 pts)$$
 $T(\vec{e_1}) = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$ and $T(\begin{bmatrix} -1 \\ 1 \end{bmatrix}) = \begin{bmatrix} d \\ e \\ f \end{bmatrix}$. Find $T(\begin{bmatrix} 3 \\ 2 \end{bmatrix})$.

$$T\left(\begin{bmatrix} 1 \\ 0 \end{bmatrix}\right) = \begin{bmatrix} a \\ b \\ c \end{bmatrix} \quad T\left(\begin{bmatrix} -1 \\ 1 \end{bmatrix}\right) = \begin{bmatrix} d \\ e \\ f \end{bmatrix}$$

$$T\left(\begin{bmatrix} 1 \\ 1 \end{bmatrix}\right) = \begin{bmatrix} d \\ e \\ f \end{bmatrix}$$

Since T is a linear transformation, $T(c\vec{u}+d\vec{v})=cT(\vec{u})+dT(\vec{v})$

$$\begin{bmatrix} \frac{3}{2} \end{bmatrix} = 5 \begin{bmatrix} \frac{1}{0} \end{bmatrix} + 2 \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

$$50, T(\begin{bmatrix} \frac{3}{2} \end{bmatrix}) = 5T(\begin{bmatrix} \frac{1}{0} \end{bmatrix}) + 2T(\begin{bmatrix} -1 \end{bmatrix})$$

$$= \begin{bmatrix} \frac{5a + 2d}{5b + 2e} \\ \frac{5c + 2f}{5c + 2f} \end{bmatrix}$$

- 6. (10 points) True or False. No explanation necessary.
 - T Every elementary row operation is invertible.
 - $\underline{\mathsf{T}}$ When \vec{u} and \vec{v} are nonzero vectors, Span $\{\vec{u}, \vec{v}\}$ contains the line through \vec{u} and the origin.
 - F Whenever a system has free variables, the solutions set contains many solutions.
 - — The columns of a 4 x 2 matrix always span ℝ².
 - T My favorite theorem used to be Theorem 4, but now it is the Invertible Matrix Theorem.
- 7. (10 points) Given A is an $m \times n$ matrix and B is an $r \times t$ matrix.
 - a. (2 pts) Explain what must be true of m, n, r and t for AB to exist. n = r m, t free
 - b. (2 pts) Explain what must be true of m, n, r and t for BA to exist. t = m n, r free
 - c. (4 pts) Explain what must be true of m and n for A^2 to exist. What about for A^T to exist? m = n for A^2 to exist. m and n are free for A^T to exist.
 - d. (2 pts) Suppose $T(\vec{x}) = A\vec{x}$. T maps $\mathbb{R}^? \to \mathbb{R}^*$. What is ? and what is *?. $? = \bigcap \qquad * = \bigcap$
- **8.** (10 points) Find all $a,b,c \in \mathbb{R}$ $(a,b,c \neq 0)$ for which the matrix $A = \begin{bmatrix} a & b \\ c & 0 \end{bmatrix}$ solves the equation $A^2 a * A^T = I_2$ where I_2 is the 2×2 identity matrix.

$$\begin{bmatrix} a & b \\ c & o \end{bmatrix} \begin{bmatrix} a & b \\ c & o \end{bmatrix} - a \begin{bmatrix} a & c \\ b & o \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} a^2 + bc & ab \\ ac & cb \end{bmatrix} - \begin{bmatrix} a^2 & ac \\ ab & o \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} bc & ab - ac \\ ac - ab & cb \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$bc = 1$$

 $ab - ac = 0 \Rightarrow a(b-c) = 0$ Since $a \neq 0$
 $ac - ab = 0 \Rightarrow a(c-b) = 0$ (b-c) = 0 $\Rightarrow b = c$
 $also bc = 1$

Solutions:
$$A = \left\{ \begin{pmatrix} a & i \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} a-1 \\ -1 & 0 \end{pmatrix} \middle| a \in \mathbb{R} \neq 6 \right\}$$
 also $bc = 1$
$$b = 1 \text{ and } c = 1$$

$$b = -1 \text{ and } c = -1$$

$$a \text{ is any non-zero}$$