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Read all of the following information before starting the exam:

e Show all work, clearly and in order if you want to get full credit (matrices can be reduced into
RREF with calculator without showing steps). I reserve the right to take off points if I cannot see
how you arrived at your answer {(even if your final answer is correct).

e Circle or otherwise indicate your final answers.

e Please keep your written answers brief; be clear and to the point. I will take points off for rambling
and for incorrect or irrelevant statements. Put a smiley face next to your name for one point.

e This test has 8 problems and is worth 100 points, It is your responsibility to make sure that yon
have all of the pages!

o Good Iuck!



1. (13 points) Consider the system of equations:

z + 6y + 2z — Su — v = —4
2z - Bu - wv = 3
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a. (& pls) Write the system as a matrix equation.
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b. (& pls) Solve the system and use vector parameter form for your solution.
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2. (10 points) Consider the vectors i, 7, i as labelled on the graph.
a. (6 pts)  Sketch and label 2 and 7 + 4.
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b. (5pts)  Describe, geometrically and in words, the space Span{{, 7, 7}.
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3. (20 points)

a. (9 pts) Give the definition of what it means for the set of vectors § = {53, 72,... 3%} to be
linearly independent. (Don't tell me the method you would use to SHOW they are linear independent. [
am looking for the definition.)
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c. (4 pts) Express {1 as a linear combination of the columns of A where the scalar associated
with T3 is one or explain why this is impossible. -4 B i
=S b, Lot sza %ﬁﬁm}’;[? 50 |wéd Ax—uﬁ,
B

—

Sa = of P il

d. (5 pis) Express 3 as a linear combination of the other columns or explain why this is

impossible.
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e. (3pts)  Given some vector b € R*, can you always solve A7 = b7 Explain.
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4. (12 points) One way to see if a linear transformation T(F) = A7 is one-to-one is to check which
vectors F in the domain are mapped to the zero vector, { (ie. Find all # such that T(F) = A%F) = 0.) We
know £ = (i will work, but there may be more in which case T is not one-to-one.

a. (6 pls) Find an example of a non-trivial (not the zero matrix) linear transformation that
maps a non-zero vector to the zero vector. Give a matrix, A, and a vector, £, and show how 4 maps
your chosen F to the zero vector.
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_b. (fpts) A linear transformation T is one-to-one if and only if the ONLY vector that T maps
to 0is & =0 (ie. only the trivial solution). Explain why if T(F) = 0 has a unique solution, ¥ = 0, then

T is one-to-one.
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5. (15 points) T is a linear transformation. T : B2 — R®,
a. (8pts)  Can T be one-to-one? Can T be onto? Explain.
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b. (7 pts) T{ﬁ]=[§] andT{[_ll]:l=[§]_FindT[[g]}.
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6. (10 points) True or False. No explanation necessary.

. l Every elementary row operation is invertible.

. lWhen i and i are nonzero vectors, Span{i, ¥} contains the line through @ and the origin.

. _F__'s’-’henever a system has free variables, the solutions set contains many solutions.

* _E__The columns of a 4 x 2 matrix always span R2.

. iMy favorite theorem used to be Theorem 4, but now it is the Invertible Matrix Theorem.

T. (10 points) Given A is an m x n matrix and B is an r x ¢ matrix.

a. (2 pts)  Explain what must be true of m,n,r and ¢ for AB to exist.
L= m t

b. (2 pts) Explain what must be true of m,n,r and t for BA to exist.
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¢. (4 pts)  Explain what must be true of m and n for A? to exist. What about for AT to exist?

m=n for AT H cu'st. .
Al and N aie frec Loy A A2 exist.
d. (2 pts)  Suppose T(F) = AF. T maps R* — R*. What is 7 and what is +7.
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8. (10 points) Find all abc € B (a,bc # 0) for which the matrix A = [ i 3 ] solves the equation

A? — a» AT = I, where I, is the 2 x 2 identity matrix.
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