Math 206 Section A

Test 1

75 points

Name: Solutions

Show all your work to receive full credit for a problem.

There are eight questions. Questions are printed on both sides of a page.

- 1. (10 points) Let $x^2 + y^2 = 9$.
 - (a) Describe or sketch the set of points in \mathbb{R}^3 that satisfy the above given equation.

Cylinder of radius 3 with the z-axis as its axis.

(b) Write the given equation in spherical coordinates.

$$\begin{aligned}
X &= \beta \sin \phi \cos \theta & y &= \beta \sin \phi \sin \theta \\
X^2 + y^2 &= 9 & \text{be comes} & \rho^2 \sin^2 \phi \cos^2 \theta + \rho^2 \sin^2 \phi \sin^2 \theta = 9 \\
& \rho^2 \sin^2 \phi = 9 & \text{otherwise}
\end{aligned}$$

(c) Is the point (0, -3, 5) on the surface represented by the given equation? Explain.

$$(0)^2 + (-3)^2 = 9$$
.
The point satisfies the equation $x^2 + y^2 = 9$.
So it is on the surface.

(d) Give cylindrical coordinates of the point (0, -3, 5).

$$r = \sqrt{0+(-3)^2} = 3$$

$$= \omega = Z = 5$$

$$\tan \theta = \frac{y}{x} = -\frac{3}{0}, \text{ undefined}.$$

$$0 = \frac{3\pi}{2} \text{ (since the point (0, -3) is on negative }$$

$$y = \sqrt{-2} \text{ (since the point (0, -3))}.$$

2. (8 points) Describe the curve in which the two surfaces $z = 6 - x^2 - y^2$ and $z = x^2 + y^2$ intersect. Write a parametrization for this curve.

Z=6-x²-y² is an upoide down paraboloid. The two paraboloids intersect in a circle.

 $Z = 6 - (x^2 + y^2) = 6 - Z$ gives Z = 3. They intersect in the plane Z = 3.

Z=X2+y2 gives x2+y2=3 Circle has radius $\sqrt{3}$.

Parametrization for the airde:

 $x = \sqrt{3} \cos t$ $y = \sqrt{3} \sin t$ z = 3