Name: Solutions

- Check that you have 7 questions on two pages.
- Show all your work to receive full credit for a problem.

1. (10 points) (For this problem do all calculations by hand.) Determine all possible values of \(h \) and \(k \) such that the solution set of the following system

 (a) is empty (b) contains infinitely many solutions

 \[
 2x_1 + hx_2 = 5 \\
 4x_1 + 3x_2 = k
 \]

 Augmented matrix is
 \[
 \left[\begin{array}{ccc|c}
 2 & h & 5 \\
 4 & 3 & k
 \end{array} \right] \sim \left[\begin{array}{ccc|c}
 2 & h & 5 \\
 0 & 3-2h & k-10
 \end{array} \right]
 \]

 (a) Solution set is empty if \(3-2h = 0 \) ie \(h = \frac{3}{2} \) and \(k-10 \neq 0 \) if \(k \neq 10 \).
 (In this case, reduced matrix looks like \(\left[\begin{array}{ccc|c}
 2 & h & 5 \\
 0 & 0 & \text{non-zero \#}
 \end{array} \right] \).)

 (b) \(3-2h = 0 \) if \(h = \frac{3}{2} \) and \(k-10 = 0 \) ie \(k = 10 \). (\(\left[\begin{array}{ccc|c}
 2 & h & 5 \\
 0 & 0 & 0
 \end{array} \right] \).)

 In this case, we have one free variable and so infinitely many solutions.

2. (8 points) Let \(A = [\vec{a}_1 \ \vec{a}_2 \ \vec{a}_3 \ \vec{a}_4] \) be a \(3 \times 4 \) matrix. Suppose \(x_1 = 3, x_2 = 4, x_3 = 1, x_4 = 2 \) is a solution of the equation \(A\vec{x} = \vec{0} \).

 (a) Are the columns of \(A \) linearly independent? Explain.

 Columns of \(A \) are not linearly independent because the equation \(A\vec{x} = \vec{0} \) has a non-trivial solution, namely \(\left[\begin{array}{c}
 3 \\
 4 \\
 1
 \end{array} \right] \).

 (b) Write the vector \(\vec{a}_4 \) as a linear combination of the vectors \(\vec{a}_1, \vec{a}_2, \) and \(\vec{a}_3 \).

 We have \(3\vec{a}_1 + 4\vec{a}_2 + \vec{a}_3 + 2\vec{a}_4 = \vec{0} \)

 So \(2\vec{a}_4 = -3\vec{a}_1 - 4\vec{a}_2 - \vec{a}_3 \)

 \(\vec{a}_4 = -3\vec{a}_1 - 4\vec{a}_2 - \frac{\vec{a}_3}{2} = -\frac{3}{2}\vec{a}_1 - 2\vec{a}_2 - \frac{1}{2}\vec{a}_3 \).
3. (10 points) Let \(A = \begin{bmatrix} 1 & 3 & 0 & -4 \\ 2 & 6 & 0 & -8 \\ 1 & 5 & 3 & 6 \end{bmatrix} \).

(a) Describe all solutions of \(A\bar{x} = \bar{0} \) in parametric vector form.

\[
\begin{bmatrix} 1 & 3 & 0 & -4 \\ 2 & 6 & 0 & -8 \\ 1 & 5 & 3 & 6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}
\sim \begin{bmatrix} 1 & 0 & -4.5 & -19 & 0 \\ 0 & 1 & 1.5 & 5 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}
\]

So \(x_1 = 4.5x_3 + 19x_4 \), \(x_2 = -1.5x_3 - 5x_4 \), \(x_3, x_4 \) free.

In parametric vector form, we have

\[
\begin{bmatrix} 4.5x_3 + 19x_4 \\ -1.5x_3 - 5x_4 \end{bmatrix} = x_3 \begin{bmatrix} 4.5 \\ -1.5 \end{bmatrix} + x_4 \begin{bmatrix} 19 \\ -5 \end{bmatrix}
\]

(b) Use your answer in part (a) to give two non-zero vectors that are solutions of the equation \(A\bar{x} = \bar{0} \).

Choose values for \(x_3 \) and \(x_4 \) to pick two non-zero vectors. \(x_3 = 1, x_4 = 0 \) gives \(\begin{bmatrix} 4.5 \\ -1.5 \end{bmatrix} \), \(x_3 = 0, x_4 = 1 \) gives \(\begin{bmatrix} 19 \\ -5 \end{bmatrix} \).

4. (6 points) Let \(\bar{a}_1, \bar{a}_2, \bar{b} \) and \(\bar{c} \) be the vectors in \(\mathbb{R}^2 \) shown in the figure, and let \(A = [\bar{a}_1 \ \bar{a}_2] \).

(a) Is the vector \(\bar{c} \) in Span\{\(\bar{a}_1, \bar{a}_2 \)\}? Explain.

The vector \(\bar{c} \) is in Span \(\{\bar{a}_1, \bar{a}_2\} \) because \(\bar{c} \) is on the line spanned by the two vectors. In fact, \(\bar{c} \) is a multiple of \(\bar{a}_1 \) (also, a multiple of \(\bar{a}_2 \)).

(b) Does the equation \(A\bar{x} = \bar{b} \) have a solution? Explain.

Since \(\bar{b} \) is not on the line spanned by the vectors \(\bar{a}_1, \bar{a}_2 \), so \(\bar{b} \) cannot be written as a linear combination of the vectors \(\bar{a}_1 \) and \(\bar{a}_2 \). Hence, the equation \(A\bar{x} = \bar{b} \) does not have a solution.
5. (8 points) Let $T : \mathbb{R}^3 \rightarrow \mathbb{R}^2$ be a linear transformation such that $T(x_1, x_2, x_3) = (-2x_2 + 3x_3, 5x_1 - x_3)$.

(a) Find the standard matrix of T.

$$
\text{Standard matrix of } T : \begin{bmatrix}
T(e_1) & T(e_2) & T(e_3)
\end{bmatrix}
= \begin{bmatrix}
0 & -2 & 3 \\
5 & 0 & -1
\end{bmatrix}.
$$

(b) Is T one-to-one? Explain.

The matrix of T is a 2×3 matrix. So it has a maximum of 2 pivots. So at least one column does not have a pivot. So there is at least one free variable. Hence, the equation $T(x) = \mathbf{0}$ has infinitely many solutions and so T is not one-to-one.

6. (6 points) Suppose a 4×4 matrix A is invertible. Explain (using pivots) why the columns of A span \mathbb{R}^4. (If you find it helpful, you may use the following steps in your explanation.)

Since A is invertible, A reduces to I_4. So the number of pivots in A is 4.

Use this to explain why the columns of A span \mathbb{R}^4.

A has a pivot in each row.

Hence the columns of A span \mathbb{R}^4.

7. (12 points) Short answers: (No explanations needed. Simply write your answers. If you do some computation to get the answer, show the computation.)

(a) Suppose the vectors $\vec{v}_1, \vec{v}_2, \text{ and } \vec{v}_3$ are in \mathbb{R}^7. How many vectors are in $\text{Span}\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$?

\[
\text{Infinitely many}
\]

(b) Suppose $T : \mathbb{R}^4 \rightarrow \mathbb{R}^2$ is an \textbf{onto} linear transformation. How many solutions does the equation $T(\vec{x}) = \begin{bmatrix} 80 \\ -45 \end{bmatrix}$ have?

\[
\text{Infinitely many}
\]

(c) Let $\vec{u} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$. Compute $\vec{u}^T\vec{u}$.

- Compute $\vec{u}^T\vec{u}$.

\[
\vec{u}^T\vec{u} = \begin{bmatrix} 0 & 1 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}
\]

- Compute $\vec{u}^T\vec{u}$.

\[
\vec{u}^T\vec{u} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = 5
\]

(d) Find the inverse of the matrix $A = \begin{bmatrix} 1 & -2 & 1 \\ 4 & -7 & 3 \\ -2 & 6 & -4 \end{bmatrix}$, if it exists.

\[
\text{A does not reduce to the identity matrix.}
\]

\[
\text{So inverse of A does not exist.}
\]

(e) Let T be a linear transformation given by $T(\vec{x}) = A\vec{x}$, where A is a 3×5 matrix. Suppose $T(\vec{u}) = \begin{bmatrix} -1 \\ 2 \\ 0 \end{bmatrix}$ and $T(\vec{v}) = \begin{bmatrix} 0 \\ -5 \\ 7 \end{bmatrix}$. Find $T(4\vec{u} - \vec{v})$.

\[
T(4\vec{u} - \vec{v}) = 4T(\vec{u}) - T(\vec{v}) = \begin{bmatrix} -4 \\ 13 \\ -7 \end{bmatrix}
\]