1. (10 points) Let \(A = \begin{bmatrix} 1 & -2 & 1 \\ 3 & -4 & 5 \\ 0 & 1 & 1 \\ -3 & 5 & -4 \end{bmatrix} \). Use this matrix to answer the following questions:

(a) Find a basis for \(\text{Col} \ A \). What is \(\dim \text{Col} \ A \)?

\[
A \sim \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}
\]

Pivots in first two columns.
Basis for \(\text{Col} \ A = \left\{ \begin{bmatrix} 1/3 \\ -2 \\ -4 \end{bmatrix}, \begin{bmatrix} -2/3 \\ 5/3 \\ 1 \end{bmatrix} \right\} \quad \dim \text{Col} \ A = 2.

(b) Write one of the columns of \(A \) as a linear combination of the other two columns. (You can use your answer in part (a) to decide which column to write as a linear combination of the other two.)

\[
A \sim \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}
\]

(Here, think about \(A \) as the augmented matrix for the system \(B \vec{x} = \vec{b} \), where \(B = \begin{bmatrix} 1/3 & -2/3 \\ -2/3 & 5/3 \\ 1/3 & 1 \end{bmatrix} \) and \(\vec{b} = \begin{bmatrix} 5 \\ -4 \end{bmatrix} \)).

This gives \(\vec{c}_3 = 3 \vec{c}_1 + \vec{c}_2 \).

(c) Is the equation \(A\vec{x} = \vec{b} \) consistent for every choice of \(\vec{b} \)? Explain.

Since the reduced echelon form of \(A \) does not have a pivot in each row, the equation \(A\vec{x} = \vec{b} \) is not consistent for every choice of \(\vec{b} \).
2. (10 points) Let \(\bar{p}_1(t) = 1 - t^2, \bar{p}_2(t) = t - t^2, \bar{p}_3(t) = 2 - 2t + t^2 \).

(a) Use coordinate vectors to show that \(B = \{ \bar{p}_1, \bar{p}_2, \bar{p}_3 \} \) is a basis for \(\mathbb{P}_2 \). Find the polynomial \(q \) in \(\mathbb{P}_2 \), given that \([q]_B = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} \).

\[
\overline{p}_1 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}, \quad \overline{p}_2 = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}, \quad \overline{p}_3 = \begin{bmatrix} -2 \\ 0 \\ 1 \end{bmatrix} \quad \text{(w.r.t the standard basis \{1, t, t^2\} for \(\mathbb{P}_2 \))}
\]
\[
\begin{bmatrix} 1 & 0 & 2 \\ -1 & -1 & -2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \quad \text{So } B \text{ is a basis for } \mathbb{P}_2.
\]
\[
q = \overline{p}_1 - 2\overline{p}_2 + \overline{p}_3 = \begin{bmatrix} 1 \\ -1 \end{bmatrix} - 2\begin{bmatrix} 0 \\ -1 \end{bmatrix} + \begin{bmatrix} -2 \\ 1 \end{bmatrix} = \begin{bmatrix} -3 \\ -4 + 2 \end{bmatrix}
\]
So \(\overline{q}(t) = -3 - 4t + 2t^2 \).

(b) Define a linear transformation \(T : \mathbb{P}_2 \to \mathbb{R}^2 \) by \(T(a_0 + a_1t + a_2t^2) = \begin{bmatrix} a_0 \\ a_1 + a_2 \end{bmatrix} \). Find \(T(\bar{p}_1), T(\bar{p}_2), \) and \(T(\bar{p}_3) \).

\[
T(\bar{p}_1) = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} = \begin{bmatrix} -1 \end{bmatrix},
\]
\[
T(\bar{p}_2) = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix},
\]
\[
T(\bar{p}_3) = \begin{bmatrix} 2 \\ -2 + 1 \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}
\]

(c) For the linear transformation \(T \) defined in part (b), the kernel of \(T \) is a subspace of \(\mathbb{P}_2 \) of dimension one. Find a basis for the kernel of \(T \). (Your answer to part (b) can help you to find a basis.) Is \(T \) one-to-one? Explain.

We know \(T(\bar{p}_2) = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad \text{(from (b))} \).

So \(\bar{p}_2 \) is in kernel of \(T \).

Since \(\ker T \) is of dim one, basis for \(\ker T = \{ \bar{p}_2 \} \).

The equation \(T(\bar{x}) = \overline{0} \) has a non-trivial solution because \(\bar{p}_2 \) is one solution of this equation.

So \(T \) is not one-to-one.
3. (10 points) Determine if the following sets are subspaces of the appropriate vector spaces. If a set is a subspace, find a basis and dimension of the subspace.

(a) All polynomials in \(\mathbb{P}_1 \) such that \(\bar{p}(1) = 1 \).

Let \(\bar{0} \) be the zero polynomial.

Then \(\bar{0}(1) = 0 \).

So \(\bar{0} \) is not in the set.

So the set is not a subspace.

(b) \(W = \{ \begin{bmatrix} a+b & 0 \\ 0 & a-b \end{bmatrix} : a, b \text{ in } \mathbb{R} \} \).

\[
\begin{bmatrix}
 a+b & 0 \\
 0 & a-b
\end{bmatrix} = a \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + b \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}.
\]

So \(W = \text{Span} \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \right\} \).

If we consider these two matrices as vectors in \(\mathbb{R}^4 \), then they form a linearly independent set (as there is a pivot in each column).

So basis for \(W = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \right\} \).

\(\dim W = 2 \).
4. (12 points) Let \(W \) be the subspace spanned by the two vectors \(\vec{u}_1 = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} \) and \(\vec{u}_2 = \begin{bmatrix} 6 \\ -3 \\ 3 \end{bmatrix} \).

(a) Is \(\{\vec{u}_1, \vec{u}_2\} \) an orthogonal basis for \(W \)? Explain.

\[
\vec{u}_1 \cdot \vec{u}_2 = 6 - 3 - 3 = 0 \quad \text{so} \quad \{\vec{u}_1, \vec{u}_2\} \text{ is an orthogonal set.}
\]

An orthogonal set is linearly independent. Also, the set \(\{\vec{u}_1, \vec{u}_2\} \) spans \(W \).

So \(\{\vec{u}_1, \vec{u}_2\} \) is a basis for \(W \). Thus it is an orthogonal basis.

(b) Let \(\vec{y} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \). Find a vector in \(W \) that is closest to \(\vec{y} \) and then find the distance between \(\vec{y} \) and \(W \).

Vector in \(W \) that is closest to \(\vec{y} \) is given by

\[
\frac{\vec{y}}{\vec{y}} = \frac{\vec{y} \cdot \vec{u}_1}{\vec{u}_1 \cdot \vec{u}_1} \vec{u}_1 + \frac{\vec{y} \cdot \vec{u}_2}{\vec{u}_2 \cdot \vec{u}_2} \vec{u}_2 = \frac{0}{1} \vec{u}_1 + \frac{6 + 3}{36 + 9 + 9} \vec{u}_2 = \frac{1}{6} \vec{u}_2 = \begin{bmatrix} -1/2 \\ 1/2 \end{bmatrix}
\]

Distance between \(\vec{y} \) and \(W \) = distance between \(\vec{y} \) and \(\frac{\vec{y}}{\vec{y}} \)

\[
= \left\| \vec{y} - \frac{\vec{y}}{\vec{y}} \right\| = \left\| \begin{bmatrix} 0 \\ 1/2 \\ 1/2 \end{bmatrix} \right\| = \sqrt{0 + \frac{1}{4} + \frac{1}{4}} = \frac{1}{2}
\]

(c) Find a vector in \(W^\perp \).

Vector in \(W^\perp = \vec{y} - \frac{\vec{y}}{\vec{y}} = \begin{bmatrix} 0 \\ 1/2 \\ 1/2 \end{bmatrix} \)

(d) Find a basis and dimension of \(W^\perp \). (Hint: Think geometrically and use your answer to part (c).)

\(\{\vec{u}_1, \vec{u}_2\} \) is a basis for \(W \) so \(\dim W = 2 \).

\(W \) is a subspace of dimension 2 in \(\mathbb{R}^3 \). So it is a plane in \(\mathbb{R}^3 \). \(W^\perp \) is then a line perpendicular to this plane in \(\mathbb{R}^3 \). So \(\dim W^\perp = 1 \).

Basis = \(\{ \begin{bmatrix} 1/2 \\ 1/2 \end{bmatrix} \} \) (Any vector in \(W^\perp \) will)
5. (10 points) A quadratic form on \(\mathbb{R}^3 \) is given by the formula \(Q(\vec{x}) = 7x_1^2 - 8x_1x_2 + 8x_1x_3 + 5x_2^2 + 9x_3^2 \).

(a) Find the symmetric matrix \(A \) of the quadratic form.

\[
A = \begin{bmatrix}
7 & -4 & 4 \\
-4 & 5 & 0 \\
4 & 0 & 9
\end{bmatrix}
\]

(b) Find a matrix \(P \) such that the change of variable \(\vec{x} = P\vec{y} \) transforms the quadratic form into one with no cross-product term. (You may use the fact that the eigenvalues of \(A \) are 13, 7, and 1.

For \(\lambda = 13 \): \(A - 13I = \begin{bmatrix}
-6 & 4 & 4 \\
4 & -8 & 0 \\
4 & 0 & -4
\end{bmatrix} \sim \begin{bmatrix}
1 & 0 & -1 \\
0 & 1 & \frac{1}{2} \\
0 & 0 & 0
\end{bmatrix} \) Basis for eigenspace: \{ \begin{bmatrix} 1 \\ 1/2 \\ 0 \end{bmatrix} \} or \{ \begin{bmatrix} \frac{1}{2} \\ -1/2 \\ 0 \end{bmatrix} \}.

For \(\lambda = 7 \): \(A - 7I = \begin{bmatrix}
0 & -4 & 4 \\
-4 & -2 & 0 \\
4 & 0 & 2
\end{bmatrix} \sim \begin{bmatrix}
1 & 0 & 1/2 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{bmatrix} \) Basis = \{ \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix} \}.

For \(\lambda = 1 \): \(A - I = \begin{bmatrix}
6 & -4 & 4 \\
-4 & 4 & 0 \\
4 & 0 & 8
\end{bmatrix} \sim \begin{bmatrix}
1 & 0 & 2 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{bmatrix} \) Basis = \{ \begin{bmatrix} 2 \\ -2 \\ 1 \end{bmatrix} \}.

\[
\begin{bmatrix}
2 & -1 & -2 \\
-1 & 2 & -2 \\
2 & 2 & 1
\end{bmatrix}
\]
Length of each column = \(\sqrt{4+4+1} = 3 \) So \(P = \begin{bmatrix}
2/3 & -1/3 & -2/3 \\
-1/3 & 2/3 & -2/3 \\
2/3 & 2/3 & 1/3
\end{bmatrix}
\]

(c) Write the new quadratic form with no cross-product term. Is \(Q \) positive definite, negative definite or indefinite? Explain.

Use eigenvalues of \(A \) to write the transformed quadratic form: 13\(x_1^2 \) + 7\(x_2^2 \) + \(x_3^2 \).

Since all the eigenvalues of \(A \) are positive, \(Q \) is positive definite.
6. (6 points) For a diagonalizable matrix A, show that $\det A$ is the product of the eigenvalues of A. (Hint: Since A is diagonalizable, you can write A as the product of certain matrices. Then take the determinant of both sides of the equation.)

$$A = PDP^{-1} \quad \Rightarrow \quad \det A = \det (PDP^{-1}) = \det P \det D \det P^{-1}$$

$$\quad = \det D \det P \det P^{-1}$$

$$\quad = \det D \det (PP^{-1})$$

$$\quad = \det D \det I$$

$$\quad = \det D \cdot (\text{since } \det I = 1).$$

So $\det A = \det D$. D is a diagonal matrix, so $\det D$ is the product of the diagonal entries of D and these entries are the eigenvalues of A.

7. (6 points) Let $S = \{\vec{u}_1, \vec{u}_2\}$ be an orthonormal set in \mathbb{R}^2 and let $A = [\vec{u}_1 \, \vec{u}_2]$ be the matrix whose columns are the vectors in S.

(a) Show that the set S is linearly independent using the definition of linear independence. (Hint: Show that the equation $c_1\vec{u}_1 + c_2\vec{u}_2 = \vec{0}$ has only the trivial solution. For example, to show $c_1 = 0$, do the dot product of each side of the equation with \vec{u}_1.)

$$c_1\vec{u}_1 + c_2\vec{u}_2 = \vec{0}$$

$$\vec{u}_1 \cdot (c_1\vec{u}_1 + c_2\vec{u}_2) = \vec{u}_1 \cdot \vec{0} = 0$$

$$c_1(\vec{u}_1 \cdot \vec{u}_1) + c_2(\vec{u}_1 \cdot \vec{u}_2) = 0$$

$$c_1(\vec{u}_1 \cdot \vec{u}_1) = 0 \quad (\text{since } \vec{u}_1 \cdot \vec{u}_1 = 0 \text{ as } \{\vec{u}_1, \vec{u}_2\} \text{ is an orthogonal set})$$

$$c_1 = 0 \quad (\text{since } \vec{u}_1 \cdot \vec{u}_1 = 1 \text{ as } \vec{u}_1 \text{ is of unit length})$$

(b) Is A invertible? Explain.

Columns of A are linearly independent, as shown in part (a). So A has a pivot in each column. Since A is a 2×2 matrix, we then have a pivot in each row. So $A \neq \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$. Hence A is invertible.
8. (7 points) Suppose A is a 4×6 matrix.

(a) Find k such that $\text{Col} \ A$ is a subspace of \mathbb{R}^k.

$$k = 4.$$

(b) Is it possible that $\dim \text{Nul} \ A = 1$? Explain. (Hint: use the rank theorem and your answer in part (a).)

By the rank theorem,

$$6 = \text{rank} \ A + \dim \text{Nul} \ A$$

Since $\text{Col} \ A$ is a subspace of \mathbb{R}^4, rank A is at most 4.

so $\text{Nul} \ A$ has dimension at least 2.

so $\dim \text{Nul} \ A \neq 1$.

9. (14 points) Short answers: (No explanations needed. Simply write your answers. If you do some calculation to get the answer, show the calculation.)

(a) If 4 is an eigenvalue of a matrix A, then what is $\det (A - 4I)$?

$$\det (A - 4I) = 0.$$

(b) Suppose $T : \mathbb{R}^4 \to \mathbb{R}^3$ is an onto linear transformation. What is the dimension of range of T?

$$\dim \text{range} \ T = 3.$$

(c) For an orthogonal matrix U, what is the inverse of U?

$$U^T$$

(d) Suppose B is a 5×5 matrix with $\det B = 10$. What is $\det 2B$?

$$\det 2B = 2^5 \det B = 2^5 \cdot 10 = 320.$$
(e) Let $T : \mathbb{R}^3 \to \mathbb{R}^2$ be the linear transformation given by $T(x_1, x_2, x_3) = (x_1 - 5x_2, 2x_3)$. What is the standard matrix of T?

$$
\begin{bmatrix}
T(e_1) & T(e_2) & T(e_3)
\end{bmatrix}
= \begin{bmatrix}
1 & -5 & 0 \\
0 & 0 & 2
\end{bmatrix}.
$$

(f) What is the length of the vector $\begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$?

$$
\sqrt{1^2 + 0^2 + (-1)^2} = \sqrt{2}.
$$

(g) Let $A = PDP^{-1}$ where $P = \begin{bmatrix} 0 & -30 & 39 & 11 \\ -3 & -7 & 5 & -3 \\ 3 & 3 & 0 & 4 \\ 2 & 0 & 3 & 4 \end{bmatrix}$ and $D = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 5 \end{bmatrix}$. Write the eigenvalues of A and a basis for the eigenspace of each eigenvalue.

Eigenvalues of A: 2, 4, 5

Basis for eigenspace:

$$
\lambda = 2 : \begin{bmatrix} 0 \\ -3 \\ 3 \\ 2 \end{bmatrix}, \quad \lambda = 4 : \begin{bmatrix} -30 \\ -7 \\ 3 \\ 0 \end{bmatrix}, \quad \lambda = 5 : \begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix}.
$$

(h) What is the characteristic polynomial of the matrix $\begin{bmatrix} 3 & -1 \\ 1 & 5 \end{bmatrix}$?

$$
\det \begin{bmatrix} 3 - \lambda & -1 \\ 1 & 5 - \lambda \end{bmatrix} = (3 - \lambda)(5 - \lambda) + 1
= \lambda^2 - 8\lambda + 16.
$$