Name:____

Mathematics 205 Final Exam April 10, 2012

Problem	Possible	Actual
1	15	
2	15	
3	15	
4	15	
5	15	
6	15	
7	15	
Total	100	

You must show all work to receive credit.

No electronic devices other than calculators are permitted. Give exact answers (such as $\ln 5$ or e^2) unless requested otherwise.

1. Let
$$\vec{v}_1 = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$$
, $\vec{v}_2 = \begin{bmatrix} 2\\2\\1\\1 \end{bmatrix}$, and $\vec{v}_3 = \begin{bmatrix} 2\\1\\2\\1 \end{bmatrix}$.

(a) Are these vectors linearly independent? Explain.

(b) Are these any of vectors orthogonal? Explain.

(c) Let $W = \text{span}\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$. Find an orthogonal basis for W.

2. Recall the difference between $\sqrt{4}$ and solving $x^2 = 4$. The former is 2 while the latter has the solutions x = 2 or x = -2. We call that positive root of $x^2 - 4 = 0$ the principal root of 4 and write $\sqrt{4}$. We can extend the definition to matrices. By diagonalizing a matrix and taking the square roots of the eigenvalues, we may compute the square root of a matrix.

(a) Let
$$A = \begin{bmatrix} 9 & 15 \\ 0 & 4 \end{bmatrix}$$
. Compute \sqrt{A} .

(b) Write all solutions to $x^2 = A$.

(c) Suppose A was a 3×3 matrix with 3 positive, distinct eigenvalues. How many solutions would there be to $x^2 = A$?

- 3. We will use the following three statements in the Invertible Matrix Theorem.
 - A is an invertible matrix.
 - There is an $n \times n$ matrix C such that CA = I.
 - There is an $n \times n$ matrix D such that AD = I.
 - (a) Show that if AB is invertible then A is invertible. You may not assume that B is invertible to do this problem.

(b) Show that if AB is invertible then B is invertible. You may not assume that A is invertible to do this problem.

- 4. Let \mathcal{K} be the set of 3×3 skew-symmetric matrices $(A = -A^T)$ and let \mathcal{S} be the set of 3×3 symmetric matrices $(A = A^T)$. Let $T : \mathcal{K} \to \mathcal{S}$ be defined by $T(A) = A^2$.
 - (a) Verify that the square of a skew-symmetric matrix is a symmetric matrix so that the statement " $T: \mathcal{K} \to \mathcal{S}$ " makes sense. Recall that this is read as "T is a map from skew-symmetric matrices to symmetric matrices."

(b) Is T a linear map?

(c) What does it mean for a map to be onto? Is T onto? (Hint: think of the dimensions of the spaces involved.)

(d) What does it mean for a map to be one-to-one? Is T one-to-one?

5. Suppose
$$B = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & -3 & 0 & k \\ 2 & 5 & 6 & 0 \\ 0 & 6 & 4 & 2 \end{bmatrix}$$

(a) If $k = 1$, what is $\det(B)$?

(b) What value of k makes B not invertible?

6. Balance the following chemical reaction using techniques learned in class.

 $\label{eq:pbN6} PbN_6 + CrMn_2O_8 \rightarrow Pb_3O_4 + Cr_2O_3 + MnO_2 + NO.$

- 7. The problem deals with the vector space of $n \times n$ matrices $\mathcal{M}_{n \times n}$.
 - (a) Explain why dim $\mathcal{M}_{n \times n} = n^2$.

(b) Let $A \in \mathcal{M}_{n \times n}$. Show that there are scalars $c_0, c_1, c_2, \ldots, c_{n^2}$, not all 0, so that $c_0 I_n + c_1 A + c_2 A^2 + \ldots + c_{n^2} A^{n^2} = O$. That is, there is a nonzero polynomial p of degree at most n^2 so that p(A) = O (where O is the $n \times n$ zero matrix).