NAMI	E	_
	IIIIVVIVIIVIIIIX _XIIITOTAL	XXI
April 9 2008	9, Mathematics 206a Multivariable Calculus Final Examination	Mr. Haines
(10) I.	Give a parametrization for:	
	A. The line segment connecting the point (1, 3	3, 2, 4) and the point (2, 1, 5, 7).
	B. The plane containing the three points (1, 2,	, 3), (1, 4, 5), and (2, 7, 9).
(5) II.	The point $\mathbf{a} = (1, 4, 3)$ lies on the sphere S of race equation of the tangent plane to S at \mathbf{a} .	adius $\sqrt{26}$ centered at the origin. Give an

(5) III. Find $\lim_{(x,y)\to(0,0)} \frac{x^2y^2}{x^4+y^4}$ if it exists. If it doesn't exist, explain why.

(15) IV. Give examples of

A. four vertices of a parallelogram that lies in a plane with equation x + y + z = 0,

B. a function $f: \Re^3 \to \Re$ with level surface having equation. $x^4 - y^2 - z^2 - 4 = 0$,

C. a non-constant vector field on \Re^3 with divergence 0.

(10) V. Suppose $f(x, y) = (x^2 - y^2, 2xy)$ and $\mathbf{a} = (1, 0)$.

A. Write a formula for Df(a), the derivative of f at a.

.

B. Describe in the words the action of Df(a) on vectors in \Re^2 .

(5) VI. Calculate the value of $\int_C \vec{F} \cdot d\vec{x}$ if $\mathbf{F}(x, y, z) = -y\mathbf{i} + x\mathbf{j} + 5\mathbf{k}$ and C is the curve parametrized by $\mathbf{c}(t) = (\cos t, \sin t, t)$ with $0 \le t \le 4\pi$.

(5) VII. If $f:\Re^2 \to \Re$ has rule $f(x, y) = x^2 + 2xy + 3y^2$, calculate the directional derivative of f at (2, 1) in the direction parallel to the vector $\mathbf{i} + \mathbf{j}$.

(5) VIII. Compute $\oint_C \mathbf{F} \cdot d\mathbf{x}$ where C is the boundary of the region in the first quadrant bounded by the curves y = 0, x = 1, and $y = x^2$

A. if **F**
$$(x, y) = (y^2, y + x)$$
.

B. if **F** (x, y) = (2x + 3y, 3x + 2y).

- (10) IX. Given the vector field $\mathbf{F}(x, y, z) = (y, x, 1)$
 - A) Prove that \mathbf{F} is path independent in \Re^3 .

B) If C is a path in \Re^3 parametrized by \mathbf{c} (t) = $\left(\cos(\pi t), \sin(\pi t), t\right)$ with $0 \le t \le 1$, use the Fundamental Theorem of Line Integrals to calculate $\int_C \mathbf{F} \cdot d\mathbf{x}$.

(5) X. If S is the solid bounded by $z = x^2 + y^2$ and $z = 4 - x^2 - y^2$, set up, but do not evaluate, the iterated integral that results from changing the triple integral $\iiint_S (1 + x\sqrt{x^2 + y^2}) dx dy dz$ to cylindrical coordinates.
[Conversion formulas are: $x = r \cos \theta$; $y = r \sin \theta$; z = w.]

(10) XI. If $\mathbf{F}(x, y, z) = 3z\mathbf{i} + 5x\mathbf{j} - 2y\mathbf{k}$ and R is the part of the surface with equation $z = x^2 + y^2$ that lies below the plane z = 4,

A. give a parametrization of the boundary of R,

B. use Stokes's Theorem to evaluate $\iint_R curl F \bullet nd\sigma$.

(10) XII. Find the area of the portion of the plane z = x + 3y that lies inside the circular cylinder with equation $x^2 + y^2 = 4$.

(5) XIII. If $f: \Re^2 \to \Re$ with rule $f(x, y) = x^2 + xy + y^2$ calculate the Hessian of f at (1, 3).