1. Consider the function \(f(x) = \frac{3}{5 - 2x} \).

 (a) Is this function continuous on the domain \((-\infty, \infty)\)? Explain.

 (b) Compute the average rate of change of \(f \) on \([2, 2.01]\).

 (c) Using the limit definition of the derivative, compute \(f'(x) \).

 (d) Find the equation of the tangent line to \(f \) at \(x = 2 \).

2. Given that \(f(0) = 2, g(0) = 3, f'(0) = 5, g'(0) = 7, \) and \(f'(3) = \pi \) compute the following.

 (a) \(h'(0) \) if \(h(x) = f(x)g(x) \)

 (b) \(j'(0) \) if \(j(x) = \frac{f(x)}{g(x)} \)

 (c) \(k'(0) \) if \(k(x) = f(g(x)) \)
3. Compute dy/dx for each of the following.

(a) $y = x^5 + 5x + e^5 + \frac{x}{5} + \frac{5}{x} + \ln(5x) + \arctan(5x) + \ln(5) + \sin 5$

(b) $y = \sqrt[3]{x} \cos(7x^3)$

(c) $y = \frac{e^x + e^\pi}{\tan 4 - 7x}$

(d) $y = \tan(e^{x^2\arcsin(5x)})$

(e) $y^3 + yx^2 + x^2 = 3y^2$

4. Consider the differential equation $y' = -3y$.

(a) For what value(s) of C and k is $y = Ce^{-kx}$ a solution to this differential equation?

(b) Find the solution that passes through $(1, 5)$.
5. Given the graph of f, sketch a graph of f' and a graph of F, an antiderivative of f such that $F(0) = -1$.

6. The graph shown is f', NOT f. Answer the questions below.

At which labeled point(s) does f have:
(a) a stationary point?
(b) a local max?
(c) a local min?
(d) f'' have a stationary point?
(e) f'' have a local max?
(f) f'' have a local min?
(g) a global max?
(h) a global min?
(i) f'' have a global max?
(j) f'' have a global min?
(k) f''' have a global max?
(l) f''' have a global min?

On what interval(s) is f:
(a) increasing?
(b) decreasing?
(c) f' increasing?
(d) f' decreasing?
(e) concave up?
(f) concave down?
(g) f'' concave up?
(h) f'' concave down?
7. Find all possible antiderivatives of the following.
 (a) \(g'(t) = e^5 + t^5 + e^{5t} \)

 (b) \(h'(r) = 3 \sin(2r) + \sqrt[3]{r} \)

8. Evaluate the following limits.
 (a) \(\lim_{x \to \infty} \frac{x^2}{\ln x} \)

 (b) \(\lim_{x \to 0} \frac{\sin (12x) - 12x}{x^3} \)

 (c) \(\lim_{x \to 0} \frac{e^x - 1}{\cos x} \)

 (d) \(\lim_{x \to 5} \frac{35 - 7x}{2x - 10} \)

 (e) \(\lim_{x \to 0^+} \frac{1}{x} \)

 (f) \(\lim_{x \to 0} \frac{1}{x} \)