NAME								
I	_11	III	IV	V	VI	VII	VIII	TOTAL
Marc 2005	ch 25, 5	Mathematics 206a Multivariable Calculus Examination #3						Mr. Haines

(15) I. Consider the path $f: [0,\infty) \subset \Box \to \Box^2$ with $f(t) = (e^{-t} \cos t, e^{-t} \sin t)$. A. Sketch a graph of f.

B. Give an integral that computes the total length of this path.

C. Calculate the value of this integral.

(10) II. Let C be the curve along the graph of $y = x^3 - x^2$ between the points (0, 0) and (1, 0). A. Give a parametrization for C.

B. Set up but <u>do not evaluate</u> the line integral $\int_C (x+y) dL$.

- (10) III. Evaluate the line integral $\int_{C} F(x, y, z) \bullet dx$ where F(x, y, z) = (y, z, x) and
 - A) C is the straight line segment from (0,0,0) to (1,2,3).

B) C is the straight line segment from (1,2,3) to (0,0,0).

(15) IV. Evaluate: $\int_{0}^{1} \int_{0}^{z} \int_{0}^{y} z \, dx \, dy \, dz$.

- (15) V. Let M be the triangular surface in the plane $\frac{x}{2} + y + z = 1$ that is cut off by the three coordinate planes. (M lies in the first octant, where $x \ge 0, y \ge 0$, and $z \ge 0$.)
 - A. Give a parametrization for the surface M.

B. Set up, but <u>do not evaluate</u>, an iterated integral that gives the area of M.

C. Set up, but <u>do not evaluate</u>, an iterated integral that gives the surface integral of the vector field $\mathbf{F}(x, y, z) = (0, x, 0)$ over the surface M.

(10) VI. Let W be the solid bounded by the planes x = 0, y = 0, and z = 0, above the surface $z^2 = x^2 + y^2$ and below the sphere $x^2 + y^2 + z^2 = 16$. Use a change of variables to spherical coordinates to set up, but <u>do not evaluate</u>, an iterated integral that computes $\iiint_W x \, dV$.

(10) VII. Evaluate this double integral by converting to polar coordinates:

 $\iint_{R} x \, dA$, where R is the region in the first quadrant bounded by the lines x = 0, y = x, and the circle $x^2 + y^2 = 9$.

- (15) VIII. Let $\mathbf{f} : R \subset \mathfrak{R}^2 \to \mathfrak{R}^3$ be defined by $f(s,t) = (s,t^2,s^2t)$ with $R = [0,1] \ge [0,2]$. Let M be the surface parametrized by f.
 - A. Set up, but <u>do not evaluate</u>, an iterated integral that gives $\sigma(M)$, the surface area of M.

B. Let $\boldsymbol{g}:\square^3 \to \square$ be defined by $\boldsymbol{g}(x, y, z) = \frac{1}{\sqrt{1 + x^2 + y^2}}$

Set up, but <u>do not evaluate</u>, an iterated integral that gives $\iint_M g d\sigma$

C. Let $F : \square^3 \to \square^3$ be defined by F(x, y, z) = (x, -y, 6)Set up, but <u>do not evaluate</u>, an iterated integral that gives $\iint_M F \square n d\sigma$