
Answer Key for Exam #2

1. Use elimination on an augmented matrix:



1 3 1 2 2
2 3 5 1 4
3 4 1 8 20


 −→




1 3 1 2 2
0 −3 3 −3 0
0 −5 −2 2 14




−→



1 0 4 −1 2
0 1 −1 1 0
0 0 −7 7 14




−→



1 0 0 3 10
0 1 0 0 −2
0 0 1 −1 −2




The fourth column has no pivot, so x4 is a free variable. The corresponding system is
x1 + 3x4 = 10, x2 = −2, x3 − x4 = −2

which we solve for the pivot variables:
x1 = 10 −3x4

x2 = −2
x3 = −2 +x4

x4 = x4

Therefore 


x1

x2

x3

x4


 =




10
−2
−2

0


 + x4



−3

0
1
1




2. We perform the eliminations

A =




1 1 3 2 3
2 3 7 3 4
1 2 4 1 1


 −→




1 1 3 2 3
0 1 1 −1 −2
0 1 1 −1 −2


 −→




1 0 2 3 5
0 1 1 −1 −2
0 0 0 0 0


 = R

A basis for the row space is the pivot rows of R, or of A. A basis for the column space is the pivot columns
of A (but not of R). A basis for the nullspace can be found as in problem 1 or by taking the negative of the
upper right corner (

2 3 5
1 −1 −2

)

of R, putting a 3× 3 identity matrix below it, and taking the three columns of that. So the only basis that
requires more work is the left nullspace. To get it we transpose the pivot columns of A and eliminate:

(
1 2 1
1 3 2

)
−→

(
1 2 1
0 1 1

)
−→

(
1 0 −1
0 1 1

)

Here we can solve the corresponding system, or throw away the 2 × 2 identity on the left, negate the rest,
and put a 1 × 1 identity under it. We also have another basis for the column space in the rows of the last
matrix above. In conclusion

A row space basis is




1
0
2
3
5


 and




0
1
1

−1
−2


 or




1
1
3
2
3


 and




2
3
7
3
4






A null space basis is




−2
−1

1
0
0


 and




−3
1
0
1
0


 and




−5
2
0
0
1




A column space basis is




1
2
1


 and




1
3
2


 or




1
0

−1


 and




0
1
1




A left null space basis is




1
−1

1




The factored form of A that displays bases for all four is

A =




1 0
0 1

−1 1




(
1 1
2 3

)(
1 0 2 3 5
0 1 1 −1 −2

)

3. To see which vector to keep we start by computing all the dot products for the three vectors. If

~v1 =




3
2
1
2


 and ~v2 =




1
5

−1
1


 and ~v3 =




2
3
4
1




then

~v1 · ~v2 = 3 + 10− 1 + 2 = 14, ~v1 · ~v3 = 6 + 6 + 4 + 2 = 18, ~v2 · ~v3 = 2 + 15− 4 + 1 = 14,

~v1 · ~v1 = 9 + 4 + 1 + 4 = 18, ~v2 · ~v2 = 1 + 25 + 1 + 1 = 28, ~v3 · ~v3 = 4 + 9 + 16 + 1 = 30

Recall that the projection of ~b onto ~a is
~b · ~a
~a · ~a ~a. If we take ~a = ~v2 then the ratios will both be 14

28 = 1
2 , so ~v2

seems like a good one to keep. Then the projection of ~v1 onto ~v2 is

~v1 · ~v2

~v2 · ~v2
~v2 =

14
28




1
5

−1
1


 =

1
2




1
5

−1
1


,

and therefore

~v1 =




3
2
1
2


 =

1
2




1
5

−1
1


 + ~e,

where ~e is the error in the projection. We want to replace ~v1 by some multiple of ~e. We have

2~e =




6
4
2
4


−




1
5

−1
1


 =




5
−1

3
3


 = ~w1,

so we throw away ~v1 and replace it by ~w1. Next we do the same thing with ~v3. The projection of ~v3 onto ~v2

is

~v3 · ~v2

~v2 · ~v2
~v2 =

14
28




1
5

−1
1


 =

1
2




1
5

−1
1


,



and therefore

~v3 =




2
3
4
1


 =

1
2




1
5

−1
1


 + ~e,

where ~e is the error in the projection, and again we want to replace ~v3 by some multiple of ~e. We have

2~e =




4
6
8
2


−




1
5

−1
1


 =




3
1
9
1


 = ~w3,

so we throw away ~v3 and replace it by ~w3. If we rename ~v2 as ~w2, we now have

~w1 =




5
−1

3
3


 and ~w2 =




1
5

−1
1


 and ~w3 =




3
1
9
1


,

where ~w1 ⊥ ~w2 and ~w3 ⊥ ~w2, but usually we would not have ~w1 ⊥ ~w3 at this point. (You might, if
you’re lucky; in fact, if we had decided to keep ~v1 instead of ~v2 then we would have been lucky at this
stage.) In this case ~w1 · ~w3 = 15 − 1 + 27 + 3 = 44 6= 0, so they are not perpendicular. Since we also have
~w1 · ~w1 = 25 + 1 + 9 + 9 = 44 and ~w3 · ~w3 = 9 + 1 + 81 + 1 = 92, it is a good idea to keep ~w1 and change ~w3.
The projection of ~w3 onto ~w1 is

~w1 · ~w3

~w1 · ~w1
~w1 =

44
44




5
−1

3
3


 =




5
−1

3
3


,

and therefore

~w3 =




3
1
9
1


 =




5
−1

3
3


 + ~e =




5
−1

3
3


 +



−2

2
6

−2


.

Replacing ~w3 by the simplest multiple of ~e, we now have



5
−1

3
3


 and




1
5

−1
1


 and



−1

1
3

−1


,

which are all perpendicular to each other, so we only have to fix the lengths. The dot product of the last
vector with itself is 12, and we did the others earlier, so we finally get that an orthonormal basis for the
subspace of R4 spanned by ~v1, ~v2 and ~v3 is

1√
44




5
−1

3
3


 and

1√
28




1
5

−1
1


 and

1√
12



−1

1
3

−1


.

If we had kept ~w3 and changed ~w1 we would have instead

1√
92




3
1
9
1


 and

1√
28




1
5

−1
1


 and

1√
3036




41
−17
−15

29


.



If we had kept ~v1 initially and changed the others we would have wound up with the orthonormal basis

1√
18




3
2
1
2


 and

1√
1386




12
−31

16
5


 and

1√
12



−1

1
3

−1


,

and if we had kept ~v3 at the beginning and changed the others we could have come out with

1√
30




2
3
4
1


 and

1√
1386




12
−31

16
5


 and

1√
180




9
1

−7
7




or with

1√
30




2
3
4
1


 and

1√
3036




41
−17
−15

29


 and

1√
4830




1
54

−43
8


.

4. Let A be the matrix with ~v1 and ~v2 as columns. Then

AT A =
(

1 3 2 1 1
1 1 2 3 1

)



1 1
3 1
2 2
1 3
1 1


 =

(
16 12
12 16

)
,

and (
16 12
12 16

)−1

=
1

16 · 16− 12 · 12

(
16 −12

−12 16

)
=

1
28

(
4 −3

−3 4

)
,

so

P =
1
28




1 1
3 1
2 2
1 3
1 1




(
4 −3

−3 4

)(
1 3 2 1 1
1 1 2 3 1

)
=

1
28




1 1
9 −5
2 2

−5 9
1 1




(
1 3 2 1 1
1 1 2 3 1

)
,

and so we find that the projection matrix P onto the subspace S is

P =
1
28




2 4 4 4 2
4 22 8 −6 4
4 8 8 8 4
4 −6 8 22 4
2 4 4 4 2


 =

1
14




1 2 2 2 1
2 11 4 −3 2
2 4 4 4 2
2 −3 4 11 2
1 2 2 2 1




We also have that

R = 2P − I =
1
7




1 2 2 2 1
2 11 4 −3 2
2 4 4 4 2
2 −3 4 11 2
1 2 2 2 1


− 1

7




7 0 0 0 0
0 7 0 0 0
0 0 7 0 0
0 0 0 7 0
0 0 0 0 7


 =

1
7




−6 2 2 2 1
2 4 4 −3 2
2 4 −3 4 2
2 −3 4 4 2
1 2 2 2 −6






is the reflection matrix through S. The projection of ~v3 =




1
−1

4
3
1


 onto S is

P~v3 =
1
14




1 2 2 2 1
2 11 4 −3 2
2 4 4 4 2
2 −3 4 11 2
1 2 2 2 1







1
−1

4
3
1


 =

1
14




14
0
28
56
14


 =




1
0
2
4
1


,

and the reflection of ~v3 through S is

R~v3 =
1
7




−6 2 2 2 1
2 4 4 −3 2
2 4 −3 4 2
2 −3 4 4 2
1 2 2 2 −6







1
−1

4
3
1


 =

1
7




7
7
0
35
7


 =




1
1
0
5
1




The projection is the average of the reflection and ~v3 itself, and this could have been used to avoid one of
the last two matrix multiplications.

5. If P =
1
20




1 3 3 1
3 11 9 −3
3 9 9 3
1 −3 3 19


 then P is symmetric and

P 2 =
1

400




20 60 60 20
60 220 180 −60
60 180 180 60
20 −60 60 380


 = P.

Any matrix P which satisfies P 2 = P = PT is a projection matrix. The trace of P is 1
20 (1 + 11 + 9 + 19) = 2,

so the subspace T that P projects onto is 2-dimensional. Therefore any two rows or columns of P will be
a basis for it as long as they are not multiples of each other. We can use the same trick on I − P to get a
basis for T⊥. Since only one of the rows of P is very nice, though, let’s eliminate:

P =
1
20




1 3 3 1
3 11 9 −3
3 9 9 3
1 −3 3 19


 −→




1 3 3 1
0 2 0 −6
0 0 0 0
0 −6 0 18


 −→




1 0 3 10
0 1 0 −3
0 0 0 0
0 0 0 0




P projects onto its own column space, or its row space since P is symmetric. This gives us a nice basis for
T , and a basis for T⊥ comes from the null space of P :

A basis for T is




1
0
3
10


 and




0
1
0

−3


 and A basis for T⊥ is



−3

0
1
0


 and



−10

3
0
1




6. We would like to find the line y = mx + b which best fits the four points (1, 2), (2, 1), (3, 3) and (4, 2) in
the sense of least squares. If the line fit exactly we would have

2 = m + b

1 = 2m + b

3 = 3m + b

2 = 4m + b

or




1 1
2 1
3 1
4 1




(
m
b

)
=




2
1
3
2






This equation has no solution, but we can find the least squares solution by multiplying by the transpose of
the matrix:

(
1 2 3 4
1 1 1 1

)



1 1
2 1
3 1
4 1




(
m
b

)
=

(
1 2 3 4
1 1 1 1

)



2
1
3
2




which becomes (
30 10
10 4

)(
m
b

)
=

(
21
8

)
.

Solving this by elimination on an augmented matrix we get

(
30 10 21
10 4 8

)
−→

(
0 −2 −3
5 2 4

)
−→

(
0 2 3
5 0 1

)
.

Therefore 2b = 3 and 5m = 1, so m = 1
5 and b = 3

2 and the best line is y =
x

5
+

3
2
.

7. If U is a 6-dimensional subspace of R8 then the projection matrix onto U is P = A
(
AT A

)−1
AT , where A

is any 8× 6 matrix whose columns are a basis of A. Calculating P directly by hand would not be fun since
we would have to invert the 6× 6 matrix AT A. According to the fundamental theorem of linear algebra, the
left null space of A is an 8 − 6 = 2 dimensional subspace of R8 and it is the orthogonal complement of the
column space of A. In other words, U⊥ is a 2-dimensional subspace of R8 and we know how to find a basis
for it. Thus an indirect way to find P is as follows:

(i) find a basis {~v1, ~v2} for the left null space of A

(ii) let A be the matrix with ~v1 and ~v2 as columns, and calculate P = A (ATA)−1AT

(iii) P is the projection matrix onto U⊥, and therefore I − P is the projection matrix onto U .

Step (i) takes some work, but in (ii) we only have to invert a 2× 2 matrix.

Scores: For the 21 exams which I have at this writing, the median is 90 and the mean is about 88.7.

Score Frequency Score Frequency Score Frequency
99 1 91 2 83 1
96 2 90 1 82 2
95 3 89 3 79 1
94 1 88 1 63 1
92 1 85 1 ?? 2


