Math 205 Section B
Test 3 (50 points)

Name: Solutions

- Check that you have 6 questions on two pages.
- Show all your work to receive full credit for a problem.

1. (9 points) Let \(A = \begin{bmatrix} -1 & 3 & -2 \\ 0 & 2 & 2 \end{bmatrix} \). Use this matrix to answer the following questions:

(a) Find a basis for \(\text{Col } A \).

\[
A = \begin{bmatrix} 1 & 0 & 5 \\ 0 & 1 & 1 \end{bmatrix}
\]

The first two columns are the pivot columns.

So a basis for \(\text{Col } A = \left\{ \begin{bmatrix} -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 3 \\ 2 \end{bmatrix} \right\} \).

(b) \(\text{Col } A \) is a subspace of \(\mathbb{R}^2 \). Is it possible to find a vector in \(\mathbb{R}^2 \) that is not in \(\text{Col } A \)? Explain.

As seen in part (a), \(\dim \text{Col } A = 2 \).

Since \(\text{Col } A \) is a subspace of \(\mathbb{R}^2 \) of dimension 2, and \(\dim \mathbb{R}^2 = 2 \), \(\text{Col } A = \mathbb{R}^2 \).

So it is not possible to find a vector in \(\mathbb{R}^2 \) that is not in \(\text{Col } A \).
2. (7 points) Let \(V \) be a vector space of dimension three. The vectors \(\vec{v}_1, \vec{v}_2, \vec{v}_3, \) and \(\vec{v}_4 \) in \(V \) are such that \(\text{Span}\{\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4\} = V \), and \(\vec{v}_1 + 3\vec{v}_2 - 2\vec{v}_3 + \vec{v}_4 = \vec{0} \). Find a basis for \(V \). Explain how the basis you find satisfies the two conditions in the definition of a basis.

\[
\begin{align*}
\vec{v}_1 &= -3\vec{v}_2 + 2\vec{v}_3 - \vec{v}_4.
\end{align*}
\]

Since \(\vec{v}_1 \) is a linear combination of \(\vec{v}_2, \vec{v}_3, \vec{v}_4 \),
\[
\text{Span} \left\{ \vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4 \right\} = \text{Span} \left\{ \vec{v}_2, \vec{v}_3, \vec{v}_4 \right\}.
\]

So \(\{\vec{v}_2, \vec{v}_3, \vec{v}_4\} \) is a spanning set for \(V \).

Since \(\dim V = 3 \), any basis of \(V \) contains three vectors.

\(\{\vec{v}_2, \vec{v}_3, \vec{v}_4\} \) is a spanning set with three vectors. So it has to be linearly independent (otherwise we could produce a linearly independent subset that spans \(V \) which would contradict the fact that \(\dim V = 3 \)).

Hence, \(\{\vec{v}_2, \vec{v}_3, \vec{v}_4\} \) is a basis for \(V \). (It is possible to find other bases.)

3. (8 points) A homogeneous system of seven linear equations in eight unknowns has one free variable. Will the system necessarily have a solution for every possible choice of constants on the right sides of the equations? Briefly explain your answer.

Let \(A \) be the coefficient matrix of the homogeneous system.

Then \(A \) is a \(7 \times 8 \) matrix, with one free variable.

So \(A \) has 7 pivot columns.

This means there is a pivot in each row and so columns of \(A \) span \(\mathbb{R}^7 \). So the system has a solution for every possible choice of constants on the right sides of the equations.

\[\text{OR}\]

\(A \) has one free variable, so \(\dim \text{Nul } A = 1 \).

By the rank theorem, \(8 = 1 + \text{rank } A \). So \(\text{rank } A = 7 \).

This means \(\dim \text{Col } A = 7 \).

\(\text{Col } A \) is a subspace of \(\mathbb{R}^7 \) of dimension 7.

Hence \(\text{Col } A = \mathbb{R}^7 \).
4. (8 points) Define a linear transformation $T : \mathbb{P}_1 \rightarrow \mathbb{R}$ by $T(p) = p(1)$.

(a) Find a polynomial that spans the kernel of T.

Let $\bar{p}(t) = at + bt$. If \bar{p} is in $\text{ker } T$, then $T(\bar{p}) = 0$.

$T(\bar{p}) = \bar{p}(1) = a + b$. So $a + b = 0$, i.e. $a = -b$.

Thus, every polynomial in $\text{ker } T$ is of the form $-b + b t = b (t - 1)$.

So $\text{ker } T = \text{span}\{t - 1\}$.

(b) Is 6 in the range of T? Explain.

6 is in the range of T, if there is a polynomial \bar{p} such that $T(\bar{p}) = 6$, i.e. $\bar{p}(1) = 6$, i.e. $a + b = 6$.

One possible answer is $a = 1$, $b = 5$. $T(1 + 5t) = 1 + 5 = 6$.

So 6 is in the range of T.

5. (8 points) Let \mathcal{B} be the basis of \mathbb{P}_2 consisting of the polynomials $1 - t^2$, $t - t^2$, and $2 - 2t + t^2$. Use this basis to answer the following questions:

(a) Let $\bar{p}(t) = 11t - 3t^2$. Find the coordinate vector of \bar{p} relative to \mathcal{B}.

$\mathcal{B} = \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}, \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix} \right\}$. $\bar{p} = \begin{bmatrix} 0 \\ 11 \\ -3 \end{bmatrix}$.

Solve the system $\begin{bmatrix} 1 & 0 & 2 \\ -1 & -1 & 1 \\ 1 & -2 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 11 \\ -3 \end{bmatrix}$.

Solution is $\begin{bmatrix} -16 \\ 27 \\ 8 \end{bmatrix}$.

(b) If $[\bar{q}]_\mathcal{B} = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$, find the polynomial \bar{q}. (Your final answer should be a polynomial and not a column vector.)

$\bar{q} = 1 \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} + 0 \begin{bmatrix} 0 \\ 1 \\ -2 \end{bmatrix} + (-1) \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}$

$\bar{q} = \begin{bmatrix} -1 \\ 2 \\ -2 \end{bmatrix}$.

So the polynomial is $-1 + 2t - 2t^2$.
6. **(10 points)** Let \[A = \begin{bmatrix} 1 & 5 & -6 & -7 \\ 2 & 4 & 5 & 2 \\ 0 & 0 & -7 & -4 \\ 0 & 0 & 3 & 1 \end{bmatrix} \]. Use this matrix to answer the following questions:

(a) Is \[\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \] an eigenvector of \(A \)? Explain.

\[
A \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 & 5 & -6 & -7 \\ 2 & 4 & 5 & 2 \\ 0 & 0 & -7 & -4 \\ 0 & 0 & 3 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 6 \\ 6 \\ 6 \\ 6 \end{bmatrix} = 6 \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}
\]

So \[\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \] is an eigenvector of \(A \) corresponding to the eigenvalue 6.

(b) Is 0 an eigenvalue of \(A \)? Explain. If it is an eigenvalue, find a basis and dimension of the corresponding eigenspace.

0 is an eigenvalue of \(A \) if the equation \(A \vec{x} = \vec{0} \) has non-trivial solutions.

\[
\begin{bmatrix} 1 & 5 & -6 & -7 \\ 2 & 4 & 5 & 2 \\ 0 & 0 & -7 & -4 \\ 0 & 0 & 3 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}
\]

The only solution is the trivial solution.

So 0 is not an eigenvalue of \(A \).

(c) \(-1\) is an eigenvalue of \(A \). The eigenspace corresponding to the eigenvalue \(-1\) is a subspace of \(\mathbb{R}^n \). What is the value of \(n \)? (Do not compute the eigenspace.)

The eigenvectors are in \(\mathbb{R}^4 \).

So \(n = 4 \).