1. (9 points) Let $A = \begin{bmatrix} -1 & 3 & -2 \\ 0 & 2 & -2 \end{bmatrix}$. Use this matrix to answer the following questions:

(a) Find a basis for $\text{Col } A$.

(b) $\text{Col } A$ is a subspace of \mathbb{R}^2. Is it possible to find a vector in \mathbb{R}^2 that is \textbf{not} in $\text{Col } A$? Explain.
2. (7 points) Let V be a vector space of dimension three. The vectors \vec{v}_1, \vec{v}_2, \vec{v}_3, and \vec{v}_4 in V are such that $\text{Span}\{\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4\} = V$, and $\vec{v}_1 + 3\vec{v}_2 - 2\vec{v}_3 + \vec{v}_4 = \vec{0}$. Find a basis for V. Explain how the basis you find satisfies the two conditions in the definition of a basis.

3. (8 points) A homogeneous system of seven linear equations in eight unknowns has one free variable. Will the system necessarily have a solution for every possible choice of constants on the right sides of the equations? Briefly explain your answer.
4. (8 points) Define a linear transformation $T : \mathbb{P}_1 \rightarrow \mathbb{R}$ by $T(\vec{p}) = \vec{p}(1)$.

(a) Find a polynomial that spans the kernel of T.

(b) Is 6 in the range of T? Explain.

5. (8 points) Let \mathcal{B} be the basis of \mathbb{P}_2 consisting of the polynomials $1 - t^2$, $t - t^2$, and $2 - 2t + t^2$. Use this basis to answer the following questions:

(a) Let $\vec{p}(t) = 1t - 3t^2$. Find the coordinate vector of \vec{p} relative to \mathcal{B}.

(b) If $[\vec{q}]_\mathcal{B} = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$, find the polynomial \vec{q}. (Your final answer should be a polynomial and not a column vector.)
6. **(10 points)** Let \(A = \begin{bmatrix} 1 & 5 & -6 & -7 \\ 2 & 4 & 5 & 2 \\ 0 & 0 & -7 & -4 \\ 0 & 0 & 3 & 1 \end{bmatrix} \). Use this matrix to answer the following questions:

(a) Is \(\begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} \) an eigenvector of \(A \)? Explain.

(b) Is 0 an eigenvalue of \(A \)? Explain. If it is an eigenvalue, find a basis and dimension of the corresponding eigenspace.

(c) \(-1\) is an eigenvalue of \(A \). The eigenspace corresponding to the eigenvalue \(-1\) is a subspace of \(\mathbb{R}^n \). What is the value of \(n \)? (Do not compute the eigenspace.)