NAME



t = 2. Give an equation for the plane that passes through  $\bar{f}(1)$  and is perpendicular to the tangent to C at that point.

(10) II. For the vector field  $\mathbf{F}(x, y, z) = (xy, -\sin z, 1)$ , compute

A. div  $(\mathbf{F}) =$ 

B.  $\operatorname{curl}(\mathbf{F}) =$ 

(10) III. Find the equation of the plane tangent to the graph of  $z = x^2 + y^4 + e^{xy}$  at the point (1, 0, 2).

(10) IV. Derivatives

A. Suppose  $\mathbf{f}(x, y, z) = (x + z + y, x^2)$  and  $\mathbf{a} = (1, 1, 0)$ . Calculate the total derivative of  $\mathbf{f}$  at  $\mathbf{a}$ .

B. Suppose  $\mathbf{g}: \mathfrak{R} \to \mathfrak{R}^3$  with rule  $\mathbf{g}(t) = (6t^2, 3t^3, t)$  and  $f: \mathfrak{R}^3 \to \mathfrak{R}$  with rule xyz. Use the Chain Rule to calculate  $(f \circ \mathbf{g})'(1)$ .

(10) V. Find the critical points of  $f(x, y, z) = x^2 + y^2 + z^2 - x - y - 2z + 1$  and determine whether they are local maxima, local minima, or saddle points.

(10) VI. If  $f: \Re^3 \to \Re$  has rule  $f(x, y.z) = x^2 e^{-yz}$ , calculate the rate of change of f at (1, 0, 0) in the direction parallel to the vector  $\mathbf{i} + \mathbf{j} + \mathbf{k}$ .

- (10) VII. Suppose  $f: \mathfrak{R}^3 \to \mathfrak{R}$  with rule  $f(x, y, z) = \sin(x + 2y + 3z)$ .
  - A. Give  $p_1(\mathbf{x})$ , the first Taylor Polynomial of f at (0, 0, 0).
  - B. Give  $p_2(\mathbf{x})$ , the second Taylor Polynomial of f at (0, 0, 0).

(10) VIII. If S is the solid below the surface  $z = 4 - x^2 - y^2$  and above the x-y plane, set up but do not evaluate an iterated integral whose value is the triple integral  $\iiint_{s} f(x, y, z) dV$ .

(10) IX. Suppose C is the closed parametrized by  $f(t) = (3\cos t, 3\sin t)$  starting at t = 0 and ending at  $t = 2\pi$ .

A. If  $F: \mathfrak{R}^2 \to \mathfrak{R}$  with F(x, y) = x + y, Compute  $\int_C F dL$ .

B. If  $\mathbf{F} : \mathfrak{R}^2 \to \mathfrak{R}^2$  with  $\mathbf{F}(x, y) = x\mathbf{i} + y\mathbf{j}$ . Compute  $\int_C \vec{F} \bullet d\vec{x}$ .

(10) X. Evaluate the iterated integral and draw the region in the plane determined by the limits on the integral.

$$\int_0^{\frac{\pi}{2}} \int_0^{\cos x} y \sin x \, dy \, dx$$