1. Consider the following polynomials in \(\mathbb{P}_2 \):
\[
\begin{align*}
 p_1 &= 10x^2 + 5x + 1, \\
 p_2 &= 9x^2 + 4x, \\
 p_3 &= 11x^2 + x - 7, \\
 p_4 &= x^2 + x + 1.
\end{align*}
\]
Let \(H = \text{Span}\{p_1, p_2, p_3, p_4\} \).

1A. What conditions must \(A, B \) and \(C \) satisfy for \(b = Ax^2 + Bx + C \) to be in \(H \)? Show all matrices used in determining your answer.

This is equivalent to asking what conditions are there on \(A, B, C \) which guarantee a solution \(\alpha, \beta, \gamma \) exists for the equation \(\alpha p_1 + \beta p_2 + \gamma p_3 + \delta p_4 = Ax^2 + Bx + C \).

The equation is also \(\alpha (10x^2 + 5x + 1) + \beta (9x^2 + 4x) + \gamma (11x^2 + x - 7) + \delta (x^2 + x + 1) = Ax^2 + Bx + C \).

Comparing like-powers of \(x \) on both sides gives the system
\[
\begin{align*}
 10\alpha + 9\beta + 11\gamma + \delta &= A, \\
 5\alpha + 4\beta + 1\gamma + \delta &= B, \\
 1\alpha + 0\beta + 1\gamma + \delta &= C.
\end{align*}
\]

Which is represented by
\[
\begin{bmatrix}
 10 & 9 & 11 & 1 & 100 \\
 5 & 4 & 1 & 1 & 100 \\
 1 & 0 & 1 & 1 & 100
\end{bmatrix}
\]

Which has RREF
\[
\begin{bmatrix}
 1 & 0 & -1 & 1 & 100 \\
 0 & 1 & 9 & -1 & 100 \\
 0 & 0 & 0 & 0 & 100
\end{bmatrix}
\]

Which represents a consistent system \(\iff \)
\[
\begin{align*}
 c &= A - \frac{9}{4}B + \frac{7}{4}C \\
 A &= \frac{9}{4}B - \frac{7}{4}C
\end{align*}
\]

1B. Verify that \(d = 24x^2 + 4x - 12 \) satisfies the conditions in 1A.

Does \(24 = \frac{9}{4} \cdot 4 - \frac{7}{4} \cdot (-12) \) work! Huh?

1C. Find all possible ways to express \(d \) as a linear combination \(\alpha p_1 + \beta p_2 + \gamma p_3 + \delta p_4 \) of \(p_1, p_2, p_3, \) and \(p_4 \).

Using \(A = 24, B = 4, \) and \(C = -12 \), the augmented matrix representing this problem is
\[
\begin{bmatrix}
 10 & 9 & 11 & 1 & 24 \\
 5 & 4 & 1 & 1 & 4 \\
 1 & 0 & -1 & 1 & -12
\end{bmatrix}
\]

Which tells us that
\[
\begin{align*}
 \alpha &= -12 + 7\delta - \frac{5}{\delta}, \\
 \beta &= 16 - 9\delta + \frac{5}{\delta}, \\
 \gamma &= \text{free}, \\
 \delta &= \text{free}
\end{align*}
\]

\[
\begin{bmatrix}
 \alpha \\
 \beta \\
 \gamma \\
 \delta
\end{bmatrix} = \begin{bmatrix}
 -12 \\
 16 \\
 0 \\
 0
\end{bmatrix} + \delta \begin{bmatrix}
 7 \\
 -9 \\
 0 \\
 1
\end{bmatrix}
\]

where \(\gamma \) and \(\delta \) are free.

1D. (Very short yes-or-no answers) Let \(S = \{p_1, p_2, p_3, p_4\} \).

Is \(S \) a linearly independent set? \(\text{NO} \) (then an non-trivial solution for \(\alpha p_1 + \beta p_2 + \gamma p_3 + \delta p_4 = 0 \) exists)

Does \(S \) span (all of) \(\mathbb{P}_3 \)? \(\text{NO} \)

Does \(S \) span (all of) \(H \)? \(\text{Yes} \) of course. see the very start of part 1! (let \(H = \text{span} \{ x^2 + x + 1 \} \))

Is \(S \) a basis for \(H \)? \(\text{NO} \) (not a L.I. set).
2. Let \(M = \begin{bmatrix} 4 & -6 & 5 & 11 & 5 \\ -2 & 3 & -7 & -1 & 2 \\ 2 & -3 & 4 & 4 & 1 \end{bmatrix} \), let \(R \) be the matrix \(\text{RREF}(M) \), let \(b = \begin{bmatrix} 2 \\ 8 \\ -2 \end{bmatrix} \) and \(n = \begin{bmatrix} -15 \\ 8 \\ 9 \\ 3 \\ 6 \end{bmatrix} \).

Fact: the \(\text{RREF} \) of \([M \mid b] \) is \(\begin{bmatrix} 1 & -3/2 & 0 & 4 & 5/2 & 3 \\ 0 & 0 & 1 & -1 & -1 & -2 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \).

2A. Does \(\text{Col} \ M = \text{Col} \ R \)? Explain. If they are not equal, find a vector in one that’s not in the other.

\(\text{NO} \). Indeed, \(\text{NONE} \) of the column vectors of \(M \) belong to \(\text{Col} \ R \). This is because any linear combination of the column vectors of \(R \) has the form \(\begin{bmatrix} x \\ -4/3 \\ 0 \end{bmatrix} \), and every column vector in \(M \) has a non-zero entry in the bottom position.

2B. Does \(\text{Nul} \ M = \text{Nul} \ R \)? Explain. If they are not equal, find a vector in one that’s not in the other.

\(\text{Yes} \). The solutions of the equations represented by the augmented matrices \([M \mid d] \) and \(\text{RREF}([M \mid d]) \) are equal.

Let \(d' \) be the vector that \(d \) changes into during the \(\text{RREF} \) process. We are saying the solutions of the equations represented by the augmented matrices \([M \mid d] \) and \([R \mid d'] \) are equal. Of course, if \(d \) is the zero vector, then \(d \) and \(d' \) are both \(0 \); that is, the solutions \(x \) of \(Mx = 0 \) and \(Rx = 0 \) are the same, which means \(\text{Nul} \ M = \text{Nul} \ R \).

2C. Find a basis for \(\text{Col} \ M \).

The pivot columns of \(M \) form a basis of \(\text{Col} \ M \).
\(\begin{bmatrix} \frac{3}{2} \\ -2 \end{bmatrix}, \begin{bmatrix} \frac{5}{2} \\ 8 \end{bmatrix} \) is a basis of \(\text{Col} \ M \).

2D. Find a basis for \(\text{Col} \ R \).

Its pivot columns are a basis; so \(\begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \) is a basis.

2E. Show how to express \(b \) as a linear combination of the basis vectors in 2C.

\(\text{We find} \text{RREF} \left(\begin{bmatrix} -2 & 3/2 & 2 \\ 2 & -4 & 2 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 3/2 \\ 0 & 1 & -2 \end{bmatrix} \) (from the Fact above). Which tells us that \(\begin{bmatrix} 2 \\ 8 \end{bmatrix} = 3 \begin{bmatrix} -2 \\ 2 \end{bmatrix} - 2 \begin{bmatrix} 5/2 \\ -4 \end{bmatrix} \).

2F. Find a basis for \(\text{Nul} \ M \).

The Fact tells us that \(Mx = 0 \) for \(x = \begin{bmatrix} 3/2x_2 - 4x_4 - 5/2x_5 \\ x_2 \\ x_4 + x_5 \\ x_4 - x_5 \end{bmatrix} \).
\(x_2, x_4, x_5 \) are free.
So the set \(\begin{bmatrix} 3/2 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -4 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} -5/2 \\ 0 \\ 1 \end{bmatrix} \) spans \(\text{Nul} \ M \).

2G. Find a basis for \(\text{Nul} \ R \).

Since \(\text{Nul} \ M = \text{Nul} \ R \), any basis of \(\text{Nul} \ M \) is a basis of \(\text{Nul} \ R \). In particular the basis in \(2F \) is a basis of \(\text{Nul} \ R \).

2H. It's a fact that \(n \in \text{Nul} M \). Express \(n \) as a linear combination of your basis vectors in \(2F \).

It's easy to see that \(\begin{bmatrix} -15 \\ 8 \\ 9 \\ 3 \\ 6 \end{bmatrix} = 8 \begin{bmatrix} 3/2 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + 3 \begin{bmatrix} -4 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} + 6 \begin{bmatrix} -5/2 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} \) (4 of the 6 column 1's in rows 2, 4 and 5 of the basis vectors).
3. Consider the vector space \(\mathbb{F} \) of all continuous functions \(f : \mathbb{R} \rightarrow \mathbb{R} \). Let \(H \) be the subset of functions in \(\mathbb{F} \) that have horizontal tangents when they intersect the vertical line \(x = 1 \). Three typical members of \(H \) are drawn in the figure to the right.

3A. For any member of \(f \) in \(H \), what is \(f'(1) \)? \(f'(1) = 0 \).

3B. Give a well-written proof that \(H \) is a subspace of \(\mathbb{F} \).

1. Is \(\vec{0} \in H \)? The zero vector in \(\mathbb{F} \) is the function \(K(x) = 0 \) for all \(x \). It satisfies \(K'(x) = 0 \) for all \(x \) and in particular, \(K'(1) = 0 \).

So \(K \in H \), that is, \(\vec{0} \in H \).

2. Let \(\vec{u} \) and \(\vec{v} \) be in \(H \); we must show that \(\vec{u} + \vec{v} \) is in \(H \).

Now, \(\vec{u} \in H \) means that \(\vec{u} \) is a function \(g \) in \(\mathbb{F} \) for which \(g'(1) = 0 \), and \(\vec{v} \in H \) means that \(\vec{v} \) is a function \(h \) in \(\mathbb{F} \) for which \(h'(1) = 0 \).

Consider \(\vec{u} + \vec{v} \). It is the function \(g + h \). By a theorem in calculus, we know that \((g + h)'(1) = g'(1) + h'(1) = 0 + 0 = 0 \). Since \((g + h)'(1) = 0 \), \(g + h \) is in \(H \), that is, \(\vec{u} + \vec{v} \) is in \(H \).

3. Let \(\vec{u} \) be in \(H \) and let \(\alpha \in \mathbb{R} \) be a scalar. We need to show that \(\alpha \vec{u} \in H \).

Again since \(\vec{u} \in H \) we know \(\vec{u} \) is a function \(g \) satisfying \(g'(1) = 0 \).

Consider \(\alpha \vec{u} \). Its the function \(\alpha g \) (that is, \((\alpha g)(x) = \alpha g(x) \) for all \(x \)).

Now from calculus we know that \((\alpha g)'(x) = \alpha g'(x) \), so in particular

\[
(\alpha g)'(1) = \alpha g'(1) = \alpha \cdot 0 = 0,
\]

and thus \(\alpha g \in H \), or, \(\alpha \vec{u} \in H \).

3C. Consider now the subset \(J \) of \(\mathbb{F} \) consisting of functions \(f \) that are in \(H \) and which also contain the point \((1,1)\) (one of the functions in the picture has this property). Is \(J \) closed under vector addition? Prove it or give a counterexample.

Consider that function (which I've labeled \(c(x) \) in the figure), it belongs to \(H \) since \(c'(1) = 0 \) and indeed is in \(J \) b/c \(c(1) = 1 \).

But \((c + c)(1) = c(1) + c(1) = 1 + 1 = 2 \), so \(c + c \) is NOT in \(J \) [so we've supplied a counterexample].

(you don't NEED this, but \(c(x) = (x-1)^2 + 1 \). Check this:
\[
c(1) = (1-1)^2 + 1 = 1 \quad \text{and} \quad c'(x) = 3(x-1)^2(1) = 0 = 3(x-1)
\]
so \(c'(1) = 0 \).

But \((c + c)(x) = 2 \).}
4. Consider the transformation \(T : \mathbb{P}_3 \to \mathbb{P}_3 \) given by \(T(ax^3 + bx^2 + cx + d) = cx^2 + bx \). So \(T \) "chops off" the cubic and constant terms of \(ax^3 + bx^2 + cx + d \), and swaps the coefficients of the \(x^2 \) and \(x \) terms.

4A. Find two different vectors \(\mathbf{p} \) and \(\mathbf{q} \) in \(\mathbb{P}_3 \) for which \(T(\mathbf{p}) \) and \(T(\mathbf{q}) \) are both equal to \(4x^2 + 5x \) or explain why this cannot be done.

There are lots of examples:
\[
\alpha \mathbf{p} = x^3 + 5x^2 + 4x + 6 \quad \text{and} \quad \alpha \mathbf{q} = 6x^3 + 5x^2 + 4x + 9. \quad \text{Example}
\]

Then \(T(\alpha \mathbf{p}) = 4x^2 + 5x = T(\alpha \mathbf{q}) \), yet \(\mathbf{p} \neq \mathbf{q} \). [Note: this says that \(T \) is NOT 1-1; see YD below.]

(Indeed \(T(\mathbf{v}) = 4x^2 + 5x \) for any vector \(\mathbf{v} \) of the form \(\mathbf{v} = ax^3 + 5x^2 + 4x + d \) when \(a \) & \(d \) are "free".)

4B. Find two different vectors \(\mathbf{a} \) and \(\mathbf{b} \) in \(\mathbb{P}_3 \) for which \(T(\mathbf{a}) \) and \(T(\mathbf{b}) \) are both equal to \(7x^3 + 5x^2 \) or explain why this cannot be done.

This is impossible, because \(T(ax^3 + bx^2 + cx + d) = cx^2 + bx \) has no \(x^3 \) term, so \(T(ax^3 + bx^2 + cx + d) \) cannot equal \(7x^3 + 5x^2 \) no matter the choice of \(a, b, c, d \).

[Note: this means that \(T \) is NOT onto \(\mathbb{R}^3 \) because if \(\mathbf{b} = 7x^3 + 5x^2 \) then \(\mathbf{b} \) is an example of a member of \(\mathbb{R}^3 \) for which \(T(\mathbf{x}) = \mathbf{b} \) has no solution \(\mathbf{x} \) for any \(\mathbf{x} \) in \(\mathbb{R}^3 \).]

4C. Show that for any vectors \(\mathbf{u} \) and \(\mathbf{v} \) in \(\mathbb{P}_3 \), the transformation \(T \) satisfies the "\(T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v}) \)" part of the definition of "linear transformation".

Let \(\mathbf{u} \) and \(\mathbf{v} \) be members of \(\mathbb{P}_3 \). So \(\mathbf{u} = ax^3 + bx^2 + cx + d \) for some scalars \(a, b, c, \) and \(d \).

And \(\mathbf{v} = ax^3 + \beta x^2 + \gamma x + \delta \) for some scalars \(a, \beta, \gamma, \) and \(\delta \).

Now, \[
T(\mathbf{u} + \mathbf{v}) = T((ax^3 + bx^2 + cx + d) + (ax^3 + \beta x^2 + \gamma x + \delta)) \]
\[
= T((a + a)x^3 + (b + \beta)x^2 + (c + \gamma)x + (d + \delta)) \]
\[
= (c + \gamma)x^2 + (b + \beta)x.
\]

and \(T(\mathbf{u}) + T(\mathbf{v}) = T(ax^3 + bx^2 + cx + d) + T(ax^3 + \beta x^2 + \gamma x + \delta) \)
\[
= cx^2 + bx + \delta x^2 + \beta x \]
\[
= (c + \gamma)x^2 + (b + \beta)x.
\]

Since the expressions in (1) and (2) are identical, we have shown that \(T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v}) \).

4D. Is \(T \) one-to-one? (Say Yes or No and give a very short reason). \(\text{NO} \) (in 4A we gave a counterexample: \(\mathbf{u} \) and \(\mathbf{v} \) satisfy \(T(\mathbf{u}) = T(\mathbf{v}), \) yet \(\mathbf{u} \neq \mathbf{v} \).)

4E. Is \(T \) onto \(\mathbb{P}_3 \)? (Say Yes or No and give a very short reason). \(\text{NO} \) (there is no \(x \in \mathbb{P}_3 \) satisfying \(T(x) = 7x^3 + 5x^2 \).)
5. Consider the elementary matrices \(P = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{bmatrix} \) and \(Q = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -5 & 0 & 1 \end{bmatrix} \).

5A: Suppose when applied to a matrix \(A \) in the order: first step \(P \), second step \(Q \), the operations turn \(A \) into the identity matrix \(I_3 \). Find \(A, A^{-1} \), and \(A^T \) and the inverse of \(A^T \). Label which is which.

We're told that \(Q \left(P(A) \right) = I_3 \),
or \(QPA = I_3 \),
or \((QP)A = I_3 \).
\(QP \) is \(A^{-1} \). But \(QP = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -5 & 0 & 1 \end{bmatrix} \).

\(\Rightarrow \quad A^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -5 & 0 & 1 \end{bmatrix} \).

It's safest (?) to find \(A = (A^{-1})^{-1} \) via calculator; \(A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1/3 & 1 \end{bmatrix} \).

Next, \(A^T = \begin{bmatrix} 1 & 0 & 5/3 \\ 0 & 1 & 0 \\ 0 & 0 & 1/3 \end{bmatrix} \), and finally, \((A^T)^{-1} = \begin{bmatrix} 1 & 0 & -5 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{bmatrix} \).

5B: What are the inverses of \(P \) and \(Q \)? (Label them).

\(P \) represents "multiply row 3 by 3". The inverse of this operation is "divide row 3 by 3". \(\Rightarrow \quad P^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1/3 \end{bmatrix} \).

\(Q \) represents "\(r_2 \leftarrow r_2 - 5r_1 \)". The inverse would be "\(r_2 \leftarrow r_2 + 5r_1 \)"
\(\Rightarrow \quad Q^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -5 & 0 & 1 \end{bmatrix} \).

5C: Bonus: We could apply the matrix \(P \) four-times in a row. What single elementary matrix accomplishes this same task?

"Doing" \(P \) four times would mean multiplying row 3 by 3, then again by 3, one more time by 3, and then a fourth time by 3.

Since \(3 \times 3 \times 3 \times 3 = 81 \), this is accomplished in one step using \(P^4 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 81 \end{bmatrix} \).

5D: Bonus: We could apply the matrix \(Q \) four-times in a row. What single elementary matrix accomplishes this same task?

Here we'd be adding \((-5)\) copies of row one to row three once, twice, three, and four times.

to add \((-5)\) times \(i \) to add \(-20 \) once,
\(\Rightarrow \quad \text{the answer is } Q^4 \left(\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -20 & 0 & 1 \end{bmatrix} \right) \).

(\text{It's NOT } Q \text{ verify } Q^4 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -20 & 0 & 1 \end{bmatrix} \text{ is NOT even an elementary matrix!})

\(Q^4 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -20 & 0 & 1 \end{bmatrix} \text{ is NOT even an elementary matrix!} \)

\(\text{I just want to emphasize that it's WRONG to say } PQA = I_3 \text{ and so } PQ = A^{-1}! \)

The order is WRONG, and \(PQ \) is \(\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -15 & 0 & 3 \end{bmatrix} \), which is \text{ NOT } the \(A^{-1} \) we found in 5A.

The other three answers are similarly incorrect.