MATH 205A Exam 2
March 7, 2008

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

Total

- Read the questions
- Answer in the provided spaces
- Show all work
- BE NEAT

Good luck!
Here are two facts you may find useful:

For problem ONE:
\[
\begin{bmatrix}
4 & 2 & 6 & 14 & 24 \\
-1 & 5 & 4 & 10 & 5 \\
2 & 2 & 4 & 24 & 14
\end{bmatrix}
\text{ is row equivalent to }
\begin{bmatrix}
1 & 0 & 1 & 0 & 5 \\
0 & 1 & 1 & 0 & 2 \\
0 & 0 & 0 & 1 & 0
\end{bmatrix}
\]

For problem TWO:
\[
\begin{bmatrix}
-1 & 5 & 18 & 1 & 0 & 0 & 0 \\
-2 & 5 & 14 & 0 & 1 & 0 & 0 \\
1 & -3 & -9 & 0 & 0 & 1 & 0 \\
-2 & 3 & 10 & 0 & 0 & 0 & 1
\end{bmatrix}
\text{ is row equivalent to }
\begin{bmatrix}
1 & 0 & 0 & 0 & -3/4 & -2 & -3/4 \\
0 & 1 & 0 & 0 & 2 & 2 & -1 \\
0 & 0 & 1 & 0 & -3/4 & -1 & 1/4 \\
0 & 0 & 0 & 1 & 11/4 & 6 & -1/4
\end{bmatrix}
\]
1. Suppose $T : \mathbb{R}^3 \to \mathbb{R}^4$ is a linear transformation and it's given that

\[
T \left(\begin{bmatrix} 4 \\ -1 \\ 2 \end{bmatrix} \right) = \begin{bmatrix} -14 \\ 29 \\ 38 \\ 27 \end{bmatrix}, \quad T \left(\begin{bmatrix} 2 \\ 5 \\ 2 \end{bmatrix} \right) = \begin{bmatrix} -6 \\ 32 \\ 46 \\ 16 \end{bmatrix}.
\]

1A. Express $x_1 = \begin{bmatrix} 14 \\ 10 \\ 24 \end{bmatrix}$ as a linear combination of $\begin{bmatrix} 4 \\ -1 \\ 2 \end{bmatrix}$, $\begin{bmatrix} 2 \\ 5 \end{bmatrix}$, and $\begin{bmatrix} 6 \\ 2 \\ 2 \end{bmatrix}$, or explain why you can't.

You can't; the row reduction of $\left[\begin{array}{ccc|c} -1 & 2 & 6 & 14 \\ 2 & 2 & 4 & 10 \\ \end{array} \right]$ to $\left[\begin{array}{ccc|c} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ \end{array} \right]$ (on page 0) shows the system $x_1 \begin{bmatrix} 4 \\ -1 \\ 2 \end{bmatrix} + x_2 \begin{bmatrix} 2 \\ 5 \\ 2 \end{bmatrix} + x_3 \begin{bmatrix} 6 \\ 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 14 \\ 10 \\ 24 \end{bmatrix}$ is inconsistent.

1B. Find $T(x_1)$ or explain why you can't, based on what you know about T.

Since we only know the values of $T \left(\begin{bmatrix} 4 \\ -1 \\ 2 \end{bmatrix} \right)$, $T \left(\begin{bmatrix} 2 \\ 5 \\ 2 \end{bmatrix} \right)$, and are unable to write $\begin{bmatrix} 14 \\ 10 \\ 24 \end{bmatrix}$ as a LC of $\begin{bmatrix} 4 \\ -1 \\ 2 \end{bmatrix}$, $\begin{bmatrix} 2 \\ 5 \\ 2 \end{bmatrix}$, $\begin{bmatrix} 6 \\ 2 \\ 2 \end{bmatrix}$, we can't find $T \left(\begin{bmatrix} 14 \\ 10 \\ 24 \end{bmatrix} \right)$.

1C. Express $x_2 = \begin{bmatrix} 24 \\ 5 \\ 14 \end{bmatrix}$ as a linear combination of $\begin{bmatrix} 4 \\ -1 \\ 2 \end{bmatrix}$, $\begin{bmatrix} 2 \\ 5 \end{bmatrix}$, and $\begin{bmatrix} 6 \\ 2 \\ 2 \end{bmatrix}$, or explain why you can't.

You can; row reduction of $\left[\begin{array}{ccc|c} 4 & 2 & 6 & 24 \\ -1 & 5 & 4 & 14 \\ \end{array} \right]$ to $\left[\begin{array}{ccc|c} 1 & 0 & 1 & 2 \\ 0 & 1 & 0 & 0 \\ \end{array} \right]$ (see info on page 0) shows the solns of $x_1 \begin{bmatrix} 4 \\ -1 \\ 2 \end{bmatrix} + x_2 \begin{bmatrix} 2 \\ 5 \\ 2 \end{bmatrix} + x_3 \begin{bmatrix} 6 \\ 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 24 \\ 5 \\ 14 \end{bmatrix}$ are $x_1 = 5 - x_3$, $x_2 = 2 - x_3$, $x_3 = \text{free}$.

In particular, let $x_2 = 0$, then $5 \begin{bmatrix} 4 \\ -1 \\ 2 \end{bmatrix} + 2 \begin{bmatrix} 5 \\ 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 24 \\ 5 \\ 14 \end{bmatrix}$...

1D. Find $T(x_2)$ or explain why you can't, based on what you know about T.

...so $T \left(\begin{bmatrix} 24 \\ 5 \\ 14 \end{bmatrix} \right) = 5 T \left(\begin{bmatrix} 4 \\ -1 \\ 2 \end{bmatrix} \right) + 2 T \left(\begin{bmatrix} 5 \\ 2 \\ 2 \end{bmatrix} \right) = 5 \begin{bmatrix} 8 \\ 3 \\ -11 \\ 27 \end{bmatrix} + 2 \begin{bmatrix} -14 \\ 29 \\ 38 \\ 27 \end{bmatrix} = \begin{bmatrix} 12 \\ 73 \\ 116 \\ -1 \end{bmatrix}$.
2. Suppose \(T : \mathbb{R}^3 \rightarrow \mathbb{R}^4 \) is a linear transformation with standard matrix \(A = \begin{bmatrix} -1 & 5 & 18 \\ -2 & 5 & 14 \\ 1 & -3 & -9 \\ -2 & 3 & 10 \end{bmatrix} \).

2A. Find \(T \left(\begin{bmatrix} 0 \\ -3 \\ 1 \end{bmatrix} \right) = A \begin{bmatrix} 0 \\ -3 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ -1 \\ 0 \\ 1 \end{bmatrix} \).

2B. Is \(T \) onto \(\mathbb{R}^4 \)? Explain your answer.

No, since solving \(A\mathbf{x} = \mathbf{b} \) is not always possible as the RREF of \(A \) has a row of zeros, which means \(A\mathbf{x} = \mathbf{b} \) could be inconsistent (see the RREF on page 0).

2C. Are there any conditions that a vector \(\mathbf{b} \) must satisfy in order to be in the image of \(T \)? If so, what are they?

In fact, the RREF on page 0 shows

\(\mathbf{b} \in \text{image of } T \iff b_1 + \frac{11}{9} b_2 + 6 b_3 - \frac{1}{3} b_4 = 0 \).

2D. Give an example of a vector which is not in the image of \(T \), or explain why this cannot be done.

Just choose \(\mathbf{b} \) so that the condition in 2C is not met:

for example, \(\mathbf{b} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \) or \(\mathbf{b} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} \) or \(\mathbf{b} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} \).

2E. Is \(T \) one-to-one? Explain your answer.

Yes. Suppose \(T(\mathbf{x}) = \mathbf{b} \), i.e. \(A\mathbf{x} = \mathbf{b} \), has a soln \(\hat{\mathbf{x}} \). (so \(A\hat{\mathbf{x}} = \mathbf{b} \))

Row reduction of \(A \) shows it has no free variables, so there is only the one soln to \(A\mathbf{x} = \mathbf{b} \), namely \(\hat{\mathbf{x}} \).

2F. Give three different vectors \(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \), each satisfying \(T(\mathbf{x}) = 0 \), or explain why this cannot be done.

Again, this is impossible b/c \(T \) is 1-1, so since \(T(\mathbf{0}) = \mathbf{0} \),

if \(T(\mathbf{v}) = \mathbf{0} \) also then \(\mathbf{0} = \mathbf{v} \)

(alternatively, the only soln to \(A\mathbf{x} = \mathbf{0} \) is \(\mathbf{x} = \mathbf{0} \) since RREF(\(A \)) shows \(A \) has no free variables).
3. Suppose an economy is modeled with four sectors A, B, C, and D. Suppose that the output of D is evenly divided (consumed) by all four sectors, while A and B each buy 75% of each other’s output yet keep none of their own (respectively). Suppose the remainder of A’s output is purchased by C. Suppose that none of C’s output is sold to B and vice versa, while A and D each use 40% of C’s output.

3A. Find the exchange table for this economy. You may assume all columns sum to one.

\[
\begin{array}{cccc}
A & B & C & D \\
0 & \frac{3}{4} & \frac{2}{5} & \frac{1}{4} \\
\frac{3}{4} & 0 & 0 & \frac{1}{4} \\
\frac{1}{4} & 0 & \frac{1}{5} & \frac{1}{4} \\
0 & \frac{1}{4} & \frac{2}{5} & \frac{1}{4} \\
\end{array}
\]

3B. Find the complete set \(\{P_A, P_B, P_C, P_D\}\) of equilibrium solutions for this economy. Write down any system of equations and augmented matrices you use in solving this problem.

We must solve the system

\[
\begin{align*}
P_A &= OP_A + \frac{3}{4}P_B + \frac{2}{5}P_C + \frac{1}{4}P_B \\
P_B &= \frac{3}{4}P_A + OP_B + OP_C + \frac{1}{4}P_D \\
P_C &= \frac{1}{4}P_A + OP_B + \frac{1}{5}P_C + \frac{1}{4}P_D \\
P_D &= OP_A + \frac{1}{4}P_B + \frac{3}{5}P_C + \frac{1}{4}P_D
\end{align*}
\]

The corresponding augmented matrix is

\[
\begin{bmatrix}
-1 & \frac{3}{4} & \frac{2}{5} & \frac{1}{4} & 0 \\
\frac{3}{4} & -1 & 0 & \frac{1}{4} & 0 \\
\frac{1}{4} & 0 & -\frac{1}{5} & \frac{1}{4} & 0 \\
0 & \frac{1}{4} & \frac{2}{5} & -\frac{3}{4} & 0 \\
\end{bmatrix}
\sim
\begin{bmatrix}
1 & 0 & 0 & -\frac{1}{5} & 0 \\
0 & 1 & 0 & -\frac{8}{5} & 0 \\
0 & 0 & 1 & -\frac{7}{8} & 0 \\
0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}
\Rightarrow
\begin{align*}
P_A &= \frac{9}{5}P_D \\
P_B &= \frac{8}{5}P_D \\
P_C &= \frac{7}{8}P_D \\
P_D &= \text{free}
\end{align*}
\]

3C. Suppose \(P_D\) is 100 dollars. Rank all four equilibrium prices from least to greatest.

Indeed for any value of \(P_D > 0\) we have

\[
P_C < P_D < P_B < P_A
\]
4. Let $M = \begin{bmatrix} 4 & a & 0 \\ 0 & 3 & b \\ 0 & 0 & 1 \end{bmatrix}$.

4A. In terms of a and b, find the inverse of M using the $"[A|I] \sim [I|A^{-1}]"$ algorithm discussed in class and show all your steps.

(as usual, there are many different "paths" to the final RREF form of A. Here's one of them. Pairs that change are written in **bold**)

\[
\begin{bmatrix} 4 & a & 0 \\ 0 & 3 & b \\ 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & a/4 & 0 \\ 0 & 1 & \frac{b}{3} \\ 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & \frac{-ab}{12} \\ 0 & 1 & \frac{b}{3} \\ 0 & 0 & 1 \end{bmatrix}
\]

4B. Find the determinants of each of the following matrices and write your answers in the boxes.

3M

NOTE $\det(3M) = 4 \cdot 3 \cdot 1 = 12$ b/c it's upper triangular.

\[
\begin{bmatrix} 4 & a & 0 \\ 4 & 3+a & b \\ 8 & 8a & 1 \end{bmatrix}
\]

N/A

this has a typo; problem discarded

\[
2M + 3I_3
\]

495

WRONG: $\det(2M) + \det(3I_3)$

but $\det(A+B) = \det(A) + \det(B)$

\[
2M + 3I_3 = \begin{bmatrix} 8 & 2a & 0 \\ 0 & 6 & 2b \\ 0 & 0 & 5 \end{bmatrix} + \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}
\]

This matrix results from A by doing $R_3 \leftarrow R_3 + \frac{b}{3}R_2$ then $R_3 \leftarrow R_3 + \frac{b}{3}R_2$. None of these change the det from $\det(A)$

\[
M^{-1}M^T
\]

1

\[
\det(m^{-1} \cdot m^T) = \det(m^{-1}) \cdot \det(m^T) = \frac{1}{12} \cdot 12 = 1
\]

\[
\begin{bmatrix} 4 & a & -1 \\ 0 & 3 & b \\ 8 & 2a + 3 & b - 2 \end{bmatrix}
\]

12
5. Consider the vector space \mathbf{F} of functions $f : \mathbb{R} \to \mathbb{R}$ which are continuous everywhere, as discussed in class. Let H consist of all members of \mathbf{F} which are differentiable at $x = 1$ and furthermore, the line tangent to the graph of any member of H is horizontal at $x = 1$.

5A. What does this last condition say that $h'(1)$ equals, for any member $u = h(x)$ which belongs to H?

\[
\boxed{h'(1) = 0}
\]

5B. Which, if any, of the following functions belong to H? Explain!

a) $e^{x^{-1}}$

\[
\frac{d}{dx} (e^{x^{-1}}) = e^{x^{-1}} \cdot \frac{1}{x^2} \quad \text{evaluate at } x = 1 \quad \text{to get } e^{1^{-1}} = e^0 = 1 \neq 0,
\]

so $e^{x^{-1}} \notin H$.

b) $p(x) = 2x^2 - 4x + 8$

\[
\frac{d}{dx} (2x^2 - 4x + 8) = 4x - 4 \quad \text{so } p'(1) = 4 \cdot 1 - 4 = 4 - 4 = 0; \quad \text{thus } p(x) \in H.
\]

5C. PROVE that H is a subspace of \mathbf{F}.

\[\boxed{\hat{0} \in H?}\]

Here $\hat{0}$ is the function $f(x) = 0$; since $f'(x) = 0$ for all x, $f'(1) = 0$ & so $f \in H$, i.e. $\hat{0} \in H$.

(alternatively: the graph of $\hat{0}$ is \[\longrightarrow \] which has a slope of 0 at 1)

\[\boxed{\hat{u} + \hat{v} \in H?}\]

Since $\hat{u}, \hat{v} \in H$, \hat{u} is a function satisfying $f'(1) = 0$.

\[\text{and } \hat{v} \in H, \hat{v} = \begin{array}{l} g \quad g'(1) = 0. \end{array} \]

Now $\left(f(x) + g(x) \right)' = f'(x) + g'(x)$ so when $\left(f(x) + g(x) \right)'$ is evaluated at $x = 1$ we get $f'(1) + g'(1) = 0 + 0 = 0$, so $\hat{u} + \hat{v} \in H$.

\((\text{not: it's incorrect to write } " (f(1) + g(1))' = 0." \quad \text{but } (f(x) + g(x))' \bigg|_{x = 1} \; \text{is fine})\)

\[\boxed{\alpha \hat{u} \in \mathbb{R} \; \& \; \hat{u} \in H?}\]

Since $\hat{u} \in H$, \hat{u} is a function satisfying $f'(1) = 0$.

\[
\alpha \hat{u} \quad \text{is the function } \alpha f, \quad \text{and } (\alpha f)' \bigg|_{x = 1} = \alpha f'(1) = \alpha \cdot 0 = 0
\]

so $\alpha \hat{u}$ is also in H.
6. Let \(P_3 \) be the vector space of polynomials of degree three-or-less, and let \(H \) be all members of \(P_3 \) which have a slope of 1 when \(x = 1 \).

6A. Find three members of \(H \), one of degree one, one of degree two, and one of degree three. CIRCLE your answers

THERE ARE MANY ANSWERS; these 3 are

a) \(x \)

Here's the technical part to say, 6A(c):
we need a polynomial of the form
\[p(x) = ax^3 + bx^2 + cx + d \quad \text{where} \quad a \neq 0 \quad \text{and} \quad p'(1) = 1. \]

Now, \(p'(x) = 3ax^2 + 2bx + c \)
so \(p'(1) = 3a + 2b + c \);
so \(3a + 2b + c = 1 \)
\[3a = 1 - 2b - c \]
\[a = \frac{1}{3} - \frac{2}{3}b - \frac{1}{3} \quad \text{where} \quad b \text{ and } c \text{ are free} \quad \text{(as long as } a \neq 0) \]

for example: \(b = c = 0 \Rightarrow a = 1 \) ...

b) \(\frac{1}{2} x^2 \)

c) \(\frac{1}{3} x^3 \)

6B. Show that \(H \) is not closed under vector addition.

Let \(\tilde{u} \) be \(x \) and \(\tilde{v} \) be \(\frac{1}{2} x^2 \),
then \(\tilde{u} \) and \(\tilde{v} \) are both in \(H \).
Now, \(\tilde{u} + \tilde{v} \) is \((x + \frac{1}{2} x^2) \), and the derivative of this is \(1 + x \), which
is \(2 \), \ NOT \(1 \), when \(x = 1 \), \(\therefore \tilde{u} + \tilde{v} \notin H \), and so

\(H \) is not closed under vector addition.