(15) I. Suppose \(R \) is the region in the xy-plane bounded by \(x = 0, \ x = 2, \ y = 0, \) and \(y = x^2 \). Suppose \(f(x) = x^2 + y^2 \).

Set up and evaluate two iterated integrals which give the volume of the solid above the region \(R \) and under the surface \(z = f(x, y) \):

A. Integrate first with respect to \(y \) and then with respect to \(x \).

B. Integrate first with respect to \(x \) and then with respect to \(y \).
(10) II. Suppose \(f(x, y, z) = (x^2 y^3, xyz) \) and \(a = (1, 1, 1) \)

A) Calculate the Jacobian matrix of \(f \) at \(a \).

B) Calculate the total derivative of \(f \) at \(a \).
(10) III. Suppose $F : \mathbb{R}^2 \to \mathbb{R}^3$ with rule $F(x, y) = (xy, y, x)$ and $G : \mathbb{R}^3 \to \mathbb{R}^1$ with rule $G(x, y, z) = x^3 + y^3$.

A. Calculate the Jacobian matrix of the function F at the point $(1, 1)$.

B. Calculate $F(1, 1)$.

C. Calculate the Jacobian matrix of the function G at the point $F(1, 1)$.

D. Calculate the Jacobian matrix of the function $G \circ F$ at the point $(1, 1)$.
(10) IV. Suppose \(f : \mathbb{R}^3 \rightarrow \mathbb{R} \) with rule \(f(x,y,z) = x + y + z^5 \)

A) Calculate the gradient of \(f \) at (1, 1, 1).

B) Calculate the directional derivative of \(f \) at (1, 1, 1) in the direction parallel to the vector (1, 2, 3).

(10) V. For the vector field \(\mathbf{F}(x,y,z) = (yz, xz, xy) \)

A) \(\text{div} (\mathbf{F}) = \)

B) \(\text{curl} (\mathbf{F}) = \)
(15) VI. For the function \(f(x, y, z) = x^3 + y^2 + z \) at the point (0, 0, 0) compute:

A) The Hessian matrix.

B) The Hessian form.

C) The second-degree Taylor polynomial.
(10) VII. Compute the critical points, if any, or the function $f : \mathbb{R}^2 \to \mathbb{R}$ with rule

$$f(x, y) = (x^2 - 1)e^y.$$ If there are any, test them for local extrema. If there are none, state why.
(10) VIII. C is a curve in Euclidean 3-space connecting the points (0, 0, 0) and (1, 1, 1) parametrized by \(f : [0,1] \rightarrow \mathbb{R}^3 \) with rule \(f(t) = (t^2, t^2, t^2) \).

A. Compute \(f(0) \).

B. Compute \(f(1) \).

C. Compute the length of the curve C parametrized by \(f \).
(10) IX. C is the straight line segment in Euclidean 3-space that connects the points \((1, 2, 0)\) and \((2, 3, 2)\).

\[\mathbf{F} : \mathbb{R}^3 \to \mathbb{R}^3 \text{ has rule } \mathbf{F}(x, y, z) = (-x + y + z, x - y + z, x + y - z). \]

Compute \(\int_C \mathbf{F} \cdot d\mathbf{x} \).