(12) I. Suppose \(f(x, y) = x \sin(xy) \)

A. \(\frac{\partial f}{\partial x} (x, y) = \)

B. \(\frac{\partial f}{\partial y} (x, y) = \)

C. \(\frac{\partial^2 f}{\partial x \partial y} (x, y) = \)

D. \(\frac{\partial^2 f}{\partial y \partial x} (x, y) = \)
II. Suppose \(f : \mathbb{R}^3 \to \mathbb{R}^3 \) with rule \(f(x, y, z) = (xyz, xy, x) \).

A. Calculate \(Jf(2, 2, 2) \), the Jacobian matrix of \(f \) at \((2, 2, 2) \).

B. Find a point at which \(Df(2, 2, 2) \), the total derivative of \(f \), has the value \((0, 8, 2) \).
(12) III. For the function \(f(x, y, z) = x + y \) at the point \((1, 1, 0)\) compute:

A) The Hessian matrix.

B) The Hessian form.

C) The second-degree Taylor polynomial.
(12) IV. Suppose \(F : \mathbb{R}^3 \rightarrow \mathbb{R}^3 \) with rule \(F(x, y, z) = (x^2, y^2, x^2 - y^2) \) and \(G : \mathbb{R}^3 \rightarrow \mathbb{R}^3 \) with rule \(G(x, y, z) = (x^2 + y^2 + z^2, x + y + z, z) \).

A. Calculate the Jacobian matrix of \(F \) at the point \((1, 2, 1)\).

B. Calculate the Jacobian matrix of the function \(G \) at the point \(F(1, 2, 1) \).

C. Calculate the Jacobian matrix of the function \(G \circ F \) at the point \((1, 2, 1)\).
(10) V. Find the equation of the tangent plane at the point \((0, 1, 1)\) to the surface with equation:

\[x^3 - 5y^2 + 6yz^3 = 1. \]

(10) VI. Suppose \(f(x, y, z) = xy^2 + x^2y - z - 5x\) and \(a = (1, 1, 1)\).

Compute the directional derivative of \(f\) at \(a\) in the direction parallel to the line \(x(t) = (t + 1, t + 2, t + 3).\)
(10) VII. Find all critical points of $f(x, y) = x^2 + y^2 - 4x - 2y + 5$. Use the Second Derivative Test to determine whether each critical point is a local minimum, a local maximum, or neither.
(8) VIII. Suppose \(f(x, y) = \frac{x^2 - y^2}{x^2 + y^2} \).

A. What is the domain of \(f \)?

B. \(\lim_{(x, y) \to (0, 0)} f(x, y) \) does not exist, and is so nasty that given any number you pick from \(-1 \) to \(1 \) you can find a line along which to approach \((0, 0)\) and get your number. Find a value for \(k \) so that if you approach \((0, 0)\) along the line \(y = kx \) the limit of \(f(x, y) \) will be \(4/5 \).
(8) IX Give an example [a sketch is sufficient] of:

A. An open set in \(\mathbb{R}^2 \) that is not bounded.

B. A closed set in \(\mathbb{R}^2 \) that is bounded.
Suppose \(f(x, y) = \sqrt{x^2 - y^2} \)

A. What is the domain of \(f \)?

B. What is \(\nabla f(x, y) \)?

C. Find all the points where the gradient of \(f \) is zero.

D. Find all the points where the gradient is undefined. [This is an infinite set.]

E. Find the minimum value of \(f \) and the values of \(x \) and \(y \) where it occurs.